Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.146
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 104, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336608

RESUMO

BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.


Assuntos
Agrobacterium tumefaciens , Tumores de Planta , Agrobacterium tumefaciens/genética , Doenças das Plantas/microbiologia , Bactérias
2.
Appl Environ Microbiol ; : e0069324, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058040

RESUMO

Symbiotic microorganisms that reside on the host skin serve as the primary defense against pathogens in vertebrates. Specifically, the skin microbiome of bats may play a crucial role in providing resistance against Pseudogymnoascus destructans (Pd), the pathogen causing white-nose syndrome. However, the epidermis symbiotic microbiome and its specific role in resisting Pd in highly resistant bats in Asia are still not well understood. In this study, we collected and characterized skin microbiota samples of 19 Myotis pilosus in China and explored the differences between Pd-positive and negative individuals. We identified inhibitory effects of these bacteria through cultivation methods. Our results revealed that the Simpson diversity index of the skin microbiota for positive individuals was significantly lower than that of negative individuals, and the relative abundance of Pseudomonas was significantly higher in positive bats. Regardless of whether individuals were positive or negative for Pd, the relative abundance of potentially antifungal genera in skin microbiota was high. Moreover, we successfully isolated 165 microbes from bat skin and 41 isolates from positive individuals able to inhibit Pd growth compared to only 12 isolates from negative individuals. A total of 10 genera of Pd-inhibiting bacteria were screened, among which the genera Algoriella, Glutamicibacter, and Psychrobacter were newly discovered as Pd-inhibiting genera. These Pd-inhibiting bacteria metabolized a variety of volatile compounds, including dimethyl trisulfide, dimethyl disulfide, propylene sulfide, 2-undecanone, and 2-nonanone, which were able to completely inhibit Pd growth at low concentrations.IMPORTANCERecently, white-nose syndrome has caused the deaths of millions of hibernating bats, even threatening some with regional extinction. Bats in China with high resistance to Pseudogymnoascus destructans can provide a powerful reference for studying the management of white-nose syndrome and understanding the bats against the pathogen's intrinsic mechanisms. This study sheds light on the crucial role of host symbiotic skin microorganisms in resistance to pathogenic fungi and highlights the potential for harnessing natural defense mechanisms for the prevention and treatment of white-nose syndrome. In addition, this may also provide promising candidates for the development of bioinsecticides and fungicides that offer new avenues for addressing fungal diseases in wildlife and agricultural environments.

3.
J Exp Bot ; 75(11): 3388-3400, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497798

RESUMO

Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.


Assuntos
Arabidopsis , Bacillus , Nitrogênio , Oryza , Transdução de Sinais , Bacillus/metabolismo , Bacillus/fisiologia , Bacillus/genética , Nitrogênio/metabolismo , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Compostos Orgânicos Voláteis/metabolismo
4.
Anal Biochem ; 689: 115503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453049

RESUMO

Terpenes play a vital role in plant defense; tomato plants produce a diverse range of terpenes within specialized glandular trichomes, influencing interactions with herbivores, predators, and pollinators. This study employed two distinct methods, namely leaf dip and maceration, to extract trichomes from tomato leaves. Terpene quantification was carried out using Gas Chromatography-Mass Spectrometry (GC-MS). The leaf dip method proved effective in selectively targeting trichome content, revealing unique extraction patterns compared to maceration. The GC-MS method demonstrated high linearity, accuracy, sensitivity, and low limits of detection and quantification. Application of the method to different tomato species (Solanum pennellii, Solanum pimpinellifolium, Solanum galapagense, Solanum habrochaites, and Solanum lycopersicum) identified significant variation in terpene content among these species, highlighting the potential of specific accessions for breeding programs. Notably, the terpene α-zingiberene, known for its repellency against whiteflies, was found in high quantities (211.90-9155.13 µg g-1) in Solanum habrochaites accession PI209978. These findings provide valuable insights into terpenoid diversity for plant defense mechanisms, guiding future research on developing pest-resistant tomato cultivars. Additionally, the study underscores the broader applications of terpenes in agriculture.


Assuntos
Solanum lycopersicum , Solanum , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais
5.
Adv Appl Microbiol ; 127: 1-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763526

RESUMO

In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Humanos , Ecossistema , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Nariz Eletrônico , Indústrias
6.
Microb Cell Fact ; 23(1): 181, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890640

RESUMO

BACKGROUND: Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group. RESULTS: We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities. CONCLUSIONS: This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.


Assuntos
Actinobacteria , Metabolismo Secundário , Compostos Orgânicos Voláteis , Actinobacteria/metabolismo , Actinobacteria/genética , Compostos Orgânicos Voláteis/metabolismo , Streptomyces/metabolismo , Streptomyces/genética , Família Multigênica
7.
Anal Bioanal Chem ; 416(5): 1293-1305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189918

RESUMO

The rising crime rate associated with document forgery has a significant impact on public safety and social stability. In document fraud cases, determining the origin of a particular stamp-pad ink is the most important objective. In this study, a comprehensive analysis of the volatile compounds in quick-drying stamp-pad inks from six commonly used brands were performed for the first time, utilizing a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and multivariate statistical analysis methods. Visual and comparative analysis of the differential volatile components among different stamp-pad ink samples was conducted using fingerprints and volcano plots. A total of 127 volatile compounds were accurately identified, with ketones, esters, alcohols, and aldehydes being the most abundant compounds in the stamp-pad inks. Hierarchical clustering analysis (HCA), including dendrograms and clustering heatmaps, was utilized to explore the correlations between these compounds and the samples. Additionally, the precise identification of positional isomers and functional group isomers of aliphatic compounds was achieved. To achieve accurate discrimination of various stamp-pad ink samples, a multivariate statistical analysis method was utilized to establish a classification model for them. Based on the results obtained from HS-GC-IMS, effective discrimination among different brands of stamp-pad ink samples was achieved through principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The model exhibited excellent performance, with the fit index of dependent variables (R2Y) and the predictive index of the model (Q2) values of 0.99 and 0.984, respectively. These results provided significant theoretical evidence for the application of HS-GC-IMS as an efficient technique in the analysis of volatile compounds, identification of positional isomers and functional group isomers, as well as tracing the origin of stamp-pad ink and analyzing the formation time of documents.

8.
Appl Microbiol Biotechnol ; 108(1): 243, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421433

RESUMO

Variations in industrial fermentation techniques have a significant impact on the fermentation of cigar tobacco leaves (CTLs), consequently influencing the aromatic attributes of the resulting cigars. The entire fermentation process of CTLs can be categorized into three distinct phases: phase 1 (CTLs prior to moisture regain), phase 2 (CTLs post-moisture regain and pile fermentation), and phase 3 (CTLs after fermentation and drying). These phases were determined based on the dynamic changes in microbial community diversity. During phase 2, there was a rapid increase in moisture and total acid content, which facilitated the proliferation of Aerococcus, a bacterial genus capable of utilizing reducing sugars, malic acid, and citric acid present in tobacco leaves. In contrast, fungal microorganisms exhibited a relatively stable response to changes in moisture and total acid, with Aspergillus, Alternaria, and Cladosporium being the dominant fungal groups throughout the fermentation stages. Bacterial genera were found to be more closely associated with variations in volatile compounds during fermentation compared to fungal microorganisms. This association ultimately resulted in higher levels of aroma components in CTLs, thereby improving the overall quality of the cigars. These findings reinforce the significance of industrial fermentation in shaping CTL quality and provide valuable insights for future efforts in the artificial regulation of secondary fermentation in CTLs. KEY POINTS: • Industrial fermentation processes impact CTLs microbial communities. • Moisture and total acid content influence microbial community succession in fermentation. • Bacterial microorganisms strongly influence CTLs' aldehyde and ketone flavors over fungi.


Assuntos
Microbiota , Produtos do Tabaco , Fermentação , Nicotiana , Aldeídos
9.
Biotechnol Appl Biochem ; 71(1): 96-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846152

RESUMO

The worldwide production of sparkling wines has been growing annually, driven by a market demand for high quality and more complex products. The present study aimed to evaluate the fermentation of Chardonnay must using two different Saccharomyces cerevisiae yeasts, either alone (from commercial brands A and B) or in combination with Torulaspora delbrueckii (ScA + Td and ScB + Td, respectively), as well as the addition of bentonite to the fermentation with ScA (ScA + Ben), to investigate their impact on aroma formation in sparkling base wine. Enological parameters, volatile composition, and sensory profile were evaluated. The results showed notable differences in total sulfur dioxide and volatile acidity among the S. cerevisiae strains. Moreover, the esters ethyl acetate, isoamyl acetate, hexyl acetate, and phenethyl acetate showed significant differences among treatments. Esters are recognized for their contribution to fruity and floral aromas, making them an essential part of the aromatic profile of wines. The descriptive analysis revealed that ScB + Td had the highest intensity of floral and tropical fruit notes, as well as aromatic clarity. The use of bentonite did not affect the aromatic composition or sensory profile of the wine. Therefore, the co-inoculation of S. cerevisiae with T. delbrueckii can lead to a base wine with a higher intensity of important volatile compounds and sensory attributes, providing an important alternative to produce winery products with a more complex aroma profile.


Assuntos
Torulaspora , Vinho , Vinho/análise , Saccharomyces cerevisiae , Odorantes , Bentonita , Fermentação , Acetatos/análise
10.
Food Microbiol ; 123: 104589, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038894

RESUMO

To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust ß-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.


Assuntos
Actinidia , Fermentação , Frutas , Odorantes , Paladar , Compostos Orgânicos Voláteis , Vinho , Actinidia/microbiologia , Vinho/microbiologia , Vinho/análise , Frutas/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Humanos , Polifenóis/metabolismo , Polifenóis/análise , Lactobacillales/metabolismo , Leveduras/metabolismo , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crescimento & desenvolvimento
11.
Food Microbiol ; 119: 104460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225043

RESUMO

It is well-known that the co-inoculation of Saccharomyces cerevisiae and non-Saccharomyces strains can modulate and improve the aromatic quality of wine through their multi-level interactions. However, the individual contribution of metabolic interaction (MI) and physical interaction (PI) on wine volatiles remains poorly understood. In this work, we utilized a double-compartment bioreactor to examine the aromatic effect of MI and PI by comparing the volatiles production in Torulaspora delbrueckii and Saccharomyces cerevisiae single fermentations to their mixed fermentations with or without physical separation. Results showed that the PI between T. delbrueckii and S. cerevisiae increased the production of most aroma compounds, especially for acetate esters and volatile fatty acids. In comparison, the MI only promoted a few volatile compounds, including ethyl decanoate, isoamyl acetate, and isobutanol. Noticeably, the MI significantly decreased the levels of ethyl dodecanoate, 2-phenylethyl alcohol, and decanoic acid, which exhibited opposite profiles in PI. Our results indicated that the PI was mainly responsible for the improved volatiles in T. delbrueckii/S. cerevisiae mixed fermentation, while the MI can be targeted to modulate the specific aroma compounds. A thorough understanding of the PI and MI aromatic effect will empower winemakers to accurately and directionally control the volatile profile of the wine, promoting the application of multi-starters to produce diverse styles of wines.


Assuntos
Torulaspora , Vinho , Fermentação , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , Vinho/análise , Acetatos/metabolismo
12.
Food Microbiol ; 119: 104447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225049

RESUMO

Yarrowia lipolytica N12 and A13 with high lipase activity obtained by mutagenesis were inoculated into sour meat, and their effects on physicochemical properties, microbial community succession, free amino acids, and volatile compounds of sour meat were investigated. Inoculation fermentation increased the contents of free amino acids observably, rapidly reduced pH, promoted the accumulation of total acids, decreased 2-thiobarbituric acid reactive substances (TBARS) values. In addition, the addition of Y. lipolytica might contribute to the growth of lactic acid bacteria, Candida spp., and Debaryomyces udenii, which play an important role in production of volatile compounds. It was shown that inoculation promoted the production of esters, aldehydes, and alcohols, especially ethyl esters, giving sour meat a better meat flavor. Besides, it was found that Y. lipolytica A13 had better fermenting property. Sample of A13 group had higher contents of ethyl esters, free amino acids and dominant microorganisms. The results may help to provide new strains for sour meat fermentation.


Assuntos
Lactobacillales , Saccharomycetales , Yarrowia , Yarrowia/genética , Ésteres/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Fermentação , Aminoácidos/metabolismo , Carne
13.
Food Microbiol ; 120: 104494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431335

RESUMO

Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 µg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.


Assuntos
Listeria monocytogenes , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiologia , Listeria monocytogenes/genética , Técnicas de Cocultura , Natação , Biofilmes , Pseudomonas
14.
Biomed Chromatogr ; 38(6): e5852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382499

RESUMO

This study describes a robust chromatographic authentication methodology for herbaceous pollen, employing gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC) and high-performance thin liquid chromatography (HPTLC) protocols. The comprehensive profiling of organic compounds not only distinguishes between different botanical sources but also establishes a reliable framework for quality control and assessment of herbaceous pollen authenticity. Traces of quercetin were detectable using HPTLC in Chaenomeles japonica, and the composition of the mobile phase led to distinct phenolic acid tracks in the extracts of free phenolic compounds. In Lonicera nummulariifolia, prominent chlorogenic acid signal and traces of 3,4-dihydroxybenzoic acid were identified, along with the presence of vanillic, trans-ferulic, p-coumaric and p-hydroxybenzoic and sinapic as phenolic acid standards. The HPLC chromatogram identified six peaks representing bioactive phenolic compounds such as gallic acid measuring 5.89 ± 0.56 mg g-1, hydroxybenzoic acid 2.39 ± 0.78 mg g-1 and caffeic acid 2.83 ± 0.11 mg g-1. The combined use of GC-MS, HPTLC and HPLC techniques provides a powerful and reliable means of authenticating the botanical origin of herbaceous pollen, offering valuable insights for quality control and ensuring the accuracy of botanical source identification.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Pólen , Cromatografia Líquida de Alta Pressão/métodos , Pólen/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia em Camada Fina/métodos , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/análise
15.
J Dairy Sci ; 107(1): 155-168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709020

RESUMO

Ohmic heating may improve bioactive compounds and processing, ensuring food safety of beverages, liquid and pasty food, or liquid with solid pieces. Due to those traits, this study conducted a comparison between ohmic heating technology and conventional heating (CH), with a focus on assessing the impact of both methods on functional compounds (such as angiotensin-converting enzyme inhibition, α-amylase and α-glucosidase inhibition, and antioxidant activity) in both fresh and thawed raw sheep milk, which had been frozen for up to 3 mo. Different ohmic heating conditions were applied and compared to CH (3.33-8.33 V/cm vs. CH [73°C/15 s]). A total of 18 peptides with some functional activities were identified by MALDI-TOF mass spectrometry analysis. Ohmic heating samples presented the highest activities related to health, followed by CH and raw milk samples; antioxidant activity range was from 0.11% to 0.71%, antihypertensive activity ranged from 0.20% to 0.72%, and antidiabetic activity ranged from 0.21% to 0.79%. Of 51 volatile compounds detected, some were degraded by freezing, storing, and heating the sheep milk. This study showed for the first time that ohmic heating processing improved sheep milk bioactive peptides and preserved volatile compounds.


Assuntos
Antioxidantes , Leite , Animais , Ovinos , Leite/química , Antioxidantes/análise , Calefação , Bebidas/análise , Peptídeos/análise , Temperatura Alta
16.
J Dairy Sci ; 107(5): 2706-2720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056563

RESUMO

Making cheese from camel milk (CM) presents various challenges due to its different physicochemical properties compared with bovine milk (BM). In this study, we investigated the chemical composition, proteolysis, meltability, oiling off, texture profile, color, microstructure, and rheological properties of low-fat Cheddar cheese (LFCC) prepared from BM-CM blends. LFCC was produced from BM or BM supplemented with 15% CM (CM15) and 30% CM (CM30), and analyzed after 14, 60, 120, and 180 d of ripening at 8°C. Except for salt content, no significant differences were observed among LFCC from BM, CM15, and CM30. The addition of CM increased the meltability and oiling off in the resulting cheese throughout storage. With respect to color properties, after melting, LFCC CM30 showed lower L* values than LFCC made from BM and CM15, and a* and b* values were higher than those of BM and CM15 samples. LFCC from CM30 also exhibited lower hardness compared with the other cheeses. Moreover, LFCC made from BM showed a rough granular surface, but cheese samples made from BM-CM blends exhibited a smooth surface. The rheological parameters, including storage modulus, loss modulus, and loss tangent, varied among cheese treatments. The determined acetoin and short-chain volatile acids (C2-C6) in LFCC were affected by the use of CM, because CM15 showed significantly higher amounts than BM and CM30, respectively. The detailed interactions between BM and CM in the cheese matrix should be further investigated.

17.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340597

RESUMO

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Assuntos
Poluentes Ambientais , Oryza , Antioxidantes/metabolismo , Plântula , Oryza/metabolismo , Pentanóis/metabolismo , Pentanóis/farmacologia , 1-Butanol/metabolismo , 1-Butanol/farmacologia , Poluentes Ambientais/metabolismo , Dissulfeto de Glutationa/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Raízes de Plantas/metabolismo
18.
Chem Biodivers ; 21(3): e202301890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38252073

RESUMO

In this investigation, the study focused on the chemical constitution and the antioxidative as well as anti-inflammatory characteristics of oils and pulpy variants (Imatchan (IM), Harmocha (HA), and Aknari (AK)) sourced from O. dillenii. This inquiry encompassed both in vitro and in silico analyses. High-performance liquid chromatography (HPLC) was employed to ascertain the phenolic constituents, while gas chromatography-mass spectrometry (GC-MS) methodologies. were applied to discern the volatile makeup. The appraisal of antioxidant potential was conducted via the deployment of assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and ferric ion chelating (FIC) techniques. The anti-inflammatory activity was examined using BSA and LOX. Molecular docking methods assessed the antioxidant and anti-inflammatory properties. According to HPLC findings, the most abundant compounds detected in AKO and IMO cultivars were quercetin 3-O-ß-D-glucoside followed by vanillic acid, ferulic acid and tyrolsol. Concerning headspace GC-MS analysis E-11-hexadecenal and (E)-2-undecenal contribute to the major compounds detected in Opuntia HA, IM, and AK pulp and oil. The DPPH IC50 for AK, HA and IM were 38.41±1.54, 42.24±0.29 and 15.17±1.28 mg/mL, respectively. The FRAP IC50 capacity of AK, HA and IM was determined to be 30.23±0.6, 55.96±0.08 and 23.41±1.83 mg/mL, respectively. AK, HA and IM displayed significant FIC activity, with IC50 values of 42.75±0.63, 39.54±0.59 and 35.31±1.38 mg/mL, respectively. The AK, HA and IM O. dillenii oils were effective in their anti-inflammatory activity. Molecular docking of O. dillenii oils phenolic compounds was conducted to determine the possible targeted proteins by the phenolic compounds in O. dillenii's compounds. Overall, these fruits demonstrated the potential for new ingredients for culinary or pharmaceutical applications, providing value to these natural species that can flourish in arid conditions.


Assuntos
Antioxidantes , Opuntia , Antioxidantes/farmacologia , Antioxidantes/química , Opuntia/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Fenóis/farmacologia , Óleos
19.
Phytochem Anal ; 35(3): 493-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114450

RESUMO

INTRODUCTION: The plant essential oils are composed of volatile compounds and have significant value in preventing and treating neurological diseases, anxiety, depression, among others. The genus Salvia has been shown to be an important medicinal resource, especially the aerial parts of genus Salvia, which are rich in volatile compounds; however, the chemical diversity and distribution patterns of volatile compounds in Salvia species are still unknown. OBJECTIVE: The work is performed to analyse the chemical diversity and distribution patterns of volatile compounds in genus Salvia. METHODS: The genomic single nucleotide polymorphisms (SNPs) combined with gas chromatography-mass spectrometry (GC-MS) were used to explore the evolution and chemical diversity of Salvia volatile compounds. Initially, the genetic relationship of genus Salvia was revealed by phylogenetic tree that was constructed based on SNPs. And then, GC-MS was applied to explore the chemical diversity of volatile compounds. RESULTS: The results indicated that the volatile compounds were mainly monoterpenoids, sesquiterpenoids, and aliphatic compounds. The genomic SNPs divided species involved in this work into four branches. The volatile compounds in the first and second branches were mainly sesquiterpenoids and monoterpenoids, respectively. Species in the third branch contained more aliphatic compounds and sesquiterpenoids. And those in the fourth branch were also rich in monoterpenoids but had relatively simple chemical compositions. CONCLUSION: This study offered new insights into the phylogenetic relationships besides chemistry diversity and distribution pattern of volatile compounds of genus Salvia, providing theoretical guidance for the investigations and development of secondary metabolites.


Assuntos
Óleos Voláteis , Salvia , Sesquiterpenos , Salvia/genética , Salvia/química , Filogenia , Óleos Voláteis/química , Óleos de Plantas/química , Monoterpenos
20.
J Basic Microbiol ; : e2400210, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014937

RESUMO

Research on fungal volatile organic compounds (VOCs) has increased worldwide in the last 10 years, but marine fungal volatilomes remain underexplored. Similarly, the hormone-signaling pathways, agronomic significance, and biocontrol potential of VOCs in plant-associated fungi make the area of research extremely promising. In the current investigation, VOCs of the isolates-Aspergillus sp. GSBT S13 and GSBT S14 from marine sediments, and Bulbithecium sp. GSBT E3 from Eucalyptus foliage were extracted using Head Space solid phase microextraction, followed by gas chromatography-mass spectrometry, identification, statistical analyses, and prediction of functions by KEGG COMPOUND and STITCH 5.0 databases. The significance of this research is fingerprinting VOCs of the isolates from distinct origins, identification of compounds using three libraries (NIST02, NIST14, and W9N11), and using bioinformatic tools to perform functional analysis. The most important findings include the identification of previously unreported compounds in fungi-1-methoxy naphthalene, diethyl phthalate, pentadecane, pristane, and nonanal; the prediction of the involvement of small molecules in the degradation of aromatic compound pathways and activation, inhibition, binding, and catalysis of metabolites with predicted protein partners. This study has ample opportunity to validate the findings and understand the mechanism or mode of action, the interspecies interactions, and the role of the metabolites in geochemical cycles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa