Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577921

RESUMO

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Assuntos
Tecido Adiposo , Proto-Oncogene Mas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Animais , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/metabolismo , Obesidade/patologia , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais
2.
Biochem Biophys Res Commun ; 727: 150309, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936224

RESUMO

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.


Assuntos
Tecido Adiposo , Metabolismo Energético , Homeostase , Camundongos Knockout , Versicanas , Animais , Versicanas/metabolismo , Versicanas/genética , Camundongos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Obesidade/genética , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Adipócitos/metabolismo
3.
Cytokine ; 181: 156689, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981157

RESUMO

BACKGROUND: With aging, white adipose tissue (WAT) undergoes distribution change and browning inhibition, which could be attenuated by exercise. Adipokine chemerin exerts roles in the above changes of WAT, and our previous studies demonstrated the effect of decreased chemerin on exercise-induced improvement of glucose and lipid metabolism in high fat diet (HFD) feeding male mice, so this study is to clarify whether chemerin's effects on glucose and lipid metabolism are associated with the distribution and browning of WAT. METHODS: After diet and exercise interventions, body weight and adipose tissue contents in different depots of male mice were weighed, body composition and energy metabolism parameters were determined by Echo MRI Body Composition Analyzer and metabolic cage, respectively. The levels of serum adiponectin and leptin were detected by ELISA, and the protein levels of PGC-1α, UCP1, adiponectin and leptin in WAT were measured by Western blot. RESULTS: Chemerin knockout exacerbated HFD-induced weight gain, upregulated the increases of visceral and subcutaneous WAT (vWAT and sWAT, especial in sWAT), and inhibited WAT browning, but improved blood lipid. Exercise reduced the body weight and WAT distribution, increased sWAT browning and further improved blood lipid in aged HFD male mice, which were abrogated by chemerin knockout. Detrimental alterations of leptin, adiponectin and adiponectin/leptin ratio were discovered in the serum and WAT of aged HFD chemerin(-/-) mice; and exercise-induced beneficial changes in these adipokines were blocked by chemerin knockout. CONCLUSION: Chemerin influences blood lipid of aged male mice under HFD and exercise states through regulating the distribution and browning of WAT, which might be related to the changes of adiponectin, leptin and adiponectin/leptin ratio.


Assuntos
Adiponectina , Tecido Adiposo Marrom , Tecido Adiposo Branco , Quimiocinas , Dieta Hiperlipídica , Leptina , Camundongos Knockout , Condicionamento Físico Animal , Animais , Masculino , Tecido Adiposo Branco/metabolismo , Condicionamento Físico Animal/fisiologia , Quimiocinas/metabolismo , Quimiocinas/sangue , Camundongos , Leptina/sangue , Leptina/metabolismo , Adiponectina/metabolismo , Adiponectina/sangue , Tecido Adiposo Marrom/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Lipídeos/sangue , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/fisiologia , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Proteína Desacopladora 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
4.
Genes Dev ; 30(5): 489-501, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944676

RESUMO

Metabolic dysfunction contributes to the clinical deterioration observed in advanced cancer patients and is characterized by weight loss, skeletal muscle wasting, and atrophy of the adipose tissue. This systemic syndrome, termed cancer-associated cachexia (CAC), is a major cause of morbidity and mortality. While once attributed solely to decreased food intake, the present description of cancer cachexia is a disorder of multiorgan energy imbalance. Here we review the molecules and pathways responsible for metabolic dysfunction in CAC and the ideas that led to the current understanding.


Assuntos
Caquexia/etiologia , Caquexia/fisiopatologia , Neoplasias/complicações , Tecido Adiposo Branco/fisiopatologia , Metabolismo dos Carboidratos/fisiologia , Sistema Endócrino/fisiopatologia , Humanos , Inflamação/complicações , Metabolismo dos Lipídeos , Fígado/fisiopatologia , Atrofia Muscular/etiologia
5.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063092

RESUMO

Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.


Assuntos
Tecido Adiposo , Poluição do Ar , Mudança Climática , Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Poluição do Ar/efeitos adversos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Obesidade/metabolismo , Obesidade/etiologia , Obesidade/epidemiologia , Animais , Tecido Adiposo/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Adiposidade
6.
J Psycholinguist Res ; 53(3): 35, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587721

RESUMO

The issues of depth vocabulary knowledge and Willingness to Communicate (henceforth, WTC) are among the most important issues in second language learning. The present study set out to empirically look into the contribution of WTC to depth of vocabulary knowledge in L2 learning. To this end, 88 English L2 learners, divided into two groups in terms of their WTC, were given two depth vocabulary tests. The Word Association Test (WAT) was first administered to make a comparison between the depth vocabulary knowledge of the two WTC groups. Then, to triangulate the results, the Word Part Levels Test (WPLT) was administered to check whether the obtained results confirmed those of WAT. Analyzing data through independent t-test and MANOVA indicated that learners with higher levels of WTC had deeper vocabulary knowledge than those with lower levels of WTC on the WAT. Further, the triangulation results evinced that although the two groups did not differ significantly on the form-section and meaning-section of the WPLT, they significantly differed on the use-section of the test. The relevant pedagogical implications of the study are discussed.


Assuntos
Idioma , Vocabulário , Humanos , Conhecimento , Testes de Linguagem , Aprendizagem
7.
Fungal Genet Biol ; 164: 103764, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481249

RESUMO

The target of rapamycin (TOR), a major pathway for the regulation of cell growth and proliferation is conserved from yeast to humans. Fission yeast contains two tor complexes, TORC1 is crucial for cell growth while TORC2 gets activated under stress conditions. Pop3/Wat1, a mammalian Lst8 ortholog is an important component of both TOR complexes and has been implicated in the oxidative stress response pathway. Here in this study, the genetic interaction analysis revealed a synthetic lethal interaction of wat1 with tor2-287 mutant cells. Co-immunoprecipitation analysis revealed Wat1 interacts with TORC1 components Tor2, Mip1, and Tco89 while wat1-17 mutant protein fails to interact with these proteins. In the absence of Wat1, the cells arrest at G1 phase with reduced cell size at non-permissive temperature reminiscent of tor2-287 mutant phenotype. Similarly, inactivation of Wat1 results in the failure of TORC1 mediated phosphorylation of Psk1 and Rps602, leading to dysregulation of amino acid permeases and delocalization of Gaf1, a DNA binding transcription factor. Overall, we have hypothesized that Wat1/Pop3 is required to execute the function of TORC1.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo
8.
Cardiovasc Diabetol ; 22(1): 84, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046242

RESUMO

AIM: Obesity is linked to cardiometabolic diseases, however non-obese individuals are also at risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). White adipose tissue (WAT) is known to play a role in both T2D and CVD, but the contribution of WAT inflammatory status especially in non-obese patients with cardiometabolic diseases is less understood. Therefore, we aimed to find associations between WAT inflammatory status and cardiometabolic diseases in non-obese individuals. METHODS: In a population-based cohort containing non-obese healthy (n = 17), T2D (n = 16), CVD (n = 18), T2D + CVD (n = 19) individuals, seventeen different cytokines were measured in WAT and in circulation. In addition, 13-color flow cytometry profiling was employed to phenotype the immune cells. Human T cell line (Jurkat T cells) was stimulated by rCCL18, and conditioned media (CM) was added to the in vitro cultures of human adipocytes. Lipolysis was measured by glycerol release. Blocking antibodies against IFN-γ and TGF-ß were used in vitro to prove a role for these cytokines in CCL18-T-cell-adipocyte lipolysis regulation axis. RESULTS: In CVD, T2D and CVD + T2D groups, CCL18 and CD4+ T cells were upregulated significantly compared to healthy controls. WAT CCL18 secretion correlated with the amounts of WAT CD4+ T cells, which also highly expressed CCL18 receptors suggesting that WAT CD4+ T cells are responders to this chemokine. While direct addition of rCCL18 to mature adipocytes did not alter the adipocyte lipolysis, CM from CCL18-treated T cells increased glycerol release in in vitro cultures of adipocytes. IFN-γ and TGF-ß secretion was significantly induced in CM obtained from T cells treated with CCL18. Blocking these cytokines in CM, prevented CM-induced upregulation of adipocyte lipolysis. CONCLUSION: We suggest that in T2D and CVD, increased production of CCL18 recruits and activates CD4+ T cells to secrete IFN-γ and TGF-ß. This, in turn, promotes adipocyte lipolysis - a possible risk factor for cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Glicerol/metabolismo , Linfócitos T/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Quimiocinas CC/metabolismo
9.
Biol Pharm Bull ; 46(2): 257-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724953

RESUMO

Platelet-activating factor acetylhydrolase (PAF-AH) hydrolyzes an acetyl ester at the sn-2 position of platelet-activating factor (PAF), thereby mediating a variety of biological functions. PAF-AH is found in three isoforms: Type I PAF-AH (PAF-AH I) and Type II PAF-AH (PAF-AH II) are intracellular enzymes whereas plasma PAF-AH is characterized by association with lipoprotein in plasma. PAF-AH I forms a tetramer constituted by two catalytic subunits (α1 and α2) with ß regulatory subunits. We recently showed that a deficiency of PAF-AH I catalytic subunits in male mice caused an increase of body weight, food intake, and white adipose tissue (WAT) weight. In this study, we examined whether the expression of this enzyme was altered in the differentiation of 3T3-L1 preadipocytes into adipocytes. The amount of PAF-AH I α1 subunit protein was significantly reduced in 3T3-L1 differentiation, while the amount of the PAF-AH I α2 subunit was not changed. Immunoprecipitation analysis of 3T3-L1 differentiation showed that the complex of PAF-AH I catalytic subunits was changed from α1/α2 heterodimer to α2/α2 homodimer. Our findings suggest that changes in PAF-AH I catalytic subunits are involved in adipocyte differentiation of 3T3-L1 and obesity in mice.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Fosfolipases A , Masculino , Camundongos , Animais , Fosfolipases A/metabolismo , Células 3T3-L1 , Domínio Catalítico , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Fator de Ativação de Plaquetas/metabolismo , Diferenciação Celular
10.
J Therm Biol ; 112: 103406, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796882

RESUMO

In order to investigate the influence of gradient cooling acclimation on body mass regulation in tree shrews (Tupaia belangeri), white adipose tissue (WAT) and brown adipose tissue (BAT) in T. belangeri between the control group and gradient cooling acclimation group on day 56 were collected, body mass, food intake, thermogenic capacity, differential metabolites, and related metabolic pathways in WAT and BAT were measured, the changes of differential metabolites were analyzed by non-targeted metabolomics method based on liquid chromatography-mass spectrometry. The results shown that gradient cooling acclimation significantly increased body mass, food intake, resting metabolic rate (RMR), non-shivering thermogenesis (NST), and masses of WAT and BAT. 23 significant differential metabolites in WAT between the gradient cooling acclimation group and the control group, of which the relative contents of 13 differential metabolites were up-regulated and 10 differential metabolites were down-regulated. 27 significant differential metabolites in BAT, of which 18 differential metabolites decreased and 9 differential metabolites increased. 15 differential metabolic pathways in WAT, 8 differential metabolic pathways in BAT, and 4 differential metabolic pathways involved in both WAT and BAT, including Purine metabolism, Pyrimidine metabolism, Glycerol phosphate metabolism, Arginine and proline metabolism, respectively. All of the above results suggested that T. belangeri could use different metabolites of adipose tissue to withstand low temperature environments and enhance their survival.


Assuntos
Tupaia , Tupaiidae , Animais , Tecido Adiposo Marrom/metabolismo , Aclimatação/fisiologia , Termogênese/fisiologia , Tecido Adiposo Branco/metabolismo , Redes e Vias Metabólicas
11.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203362

RESUMO

Obesity is one of the world's most serious public health issues, with a high risk of developing a wide range of diseases. As a result, focusing on adipose tissue dysfunction may help to prevent the metabolic disturbances commonly associated with obesity. Nutraceutical supplementation may be a crucial strategy for improving WAT inflammation and obesity and accelerating the browning process. The aim of this study was to perform a preclinical "proof of concept" study on Bergacyn®, an innovative formulation originating from a combination of bergamot polyphenolic fraction (BPF) and Cynara cardunculus (CyC), for the treatment of adipose tissue dysfunction. In particular, Bergacyn® supplementation in WD/SW-fed mice at doses of 50 mg/kg given orally for 12 weeks, was able to reduce body weight and total fat mass in the WD/SW mice, in association with an improvement in plasma biochemical parameters, including glycemia, total cholesterol, and LDL levels. In addition, a significant reduction in serum ALT levels was highlighted. The decreased WAT levels corresponded to an increased weight of BAT tissue, which was associated with a downregulation of PPARγ as compared to the vehicle group. Bergacyn® was able to restore PPARγ levels and prevent NF-kB overexpression in the WAT of mice fed a WD/SW diet, suggesting an improved oxidative metabolism and inflammatory status. These results were associated with a significant potentiation of the total antioxidant status in WD/SW mice. Finally, our data show, for the first time, that Bergacyn® supplementation may be a valuable approach to counteract adipose tissue dysfunction and obesity-associated effects on cardiometabolic risk.


Assuntos
Cynara , PPAR gama , Animais , Camundongos , Camundongos Obesos , Aumento de Peso , Redução de Peso , Obesidade/tratamento farmacológico , Tecido Adiposo , Extratos Vegetais/farmacologia
12.
Proc Biol Sci ; 289(1976): 20220598, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703045

RESUMO

Fat-storing hibernators rely on fatty acids from white adipose tissue (WAT) as an energy source to sustain hibernation. Whereas arctic and temperate hibernators preferentially recruit dietary polyunsaturated fatty acids (PUFAs), tropical hibernators can rely on monounsaturated fatty acids that produce fewer lipid peroxides during oxidation. Nevertheless, compositional data on WAT from tropical hibernators are scant and questions remain regarding fat recruitment and metabolism under different environmental conditions. We analyse fatty acid profiles from the WAT of captive dwarf lemurs (Cheirogaleus medius) subjected to high-sugar or high-fat diets during fattening and cold or warm conditions during hibernation. Dwarf lemurs fed high-sugar (compared to high-fat) diets displayed WAT profiles more comparable to wild lemurs that fatten on fruits and better depleted their fat reserves during hibernation. One PUFA, linoleic acid, remained elevated before hibernation, potentially lingering from the diets provisioned prior to fattening. That dwarf lemurs preferentially recruit the PUFA linoleic acid from diets that are naturally low in availability could explain the discrepancy between captive and wild lemurs' WAT. While demonstrating that minor dietary changes can produce major changes in seasonal fat deposition and depletion, our results highlight the complex role for PUFA metabolism in the ecology of tropical hibernators.


Assuntos
Cheirogaleidae , Hibernação , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Frutas , Ácidos Linoleicos/metabolismo , Açúcares/metabolismo
13.
Int Immunol ; 33(5): 251-259, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33403383

RESUMO

Group 2 innate lymphoid cells (ILC2s) are novel lymphocytes discovered in 2010. Unlike T or B cells, ILC2s are activated non-specifically by environmental factors and produce various cytokines, thus playing a role in tissue homeostasis, diseases including allergic diseases, and parasite elimination. ILC2s were first reported as cells abundantly present in fat-associated lymphoid clusters in adipose tissue. However, subsequent studies revealed their presence in various tissues throughout the body, acting as key players in tissue-specific diseases. Recent histologic analyses revealed that ILC2s are concentrated in specific regions in tissues, such as the lamina propria and perivascular regions, with their function being controlled by the surrounding cells, such as epithelial cells and other immune cells, via cytokine and lipid production or by cell-cell interactions through surface molecules. Especially, some stromal cells have been identified as the niche cells for ILC2s, both in the steady state and under inflammatory conditions, through the production of IL-33 or extracellular matrix factors. Additionally, peripheral neurons reportedly co-localize with ILC2s and alter their function directly through neurotransmitters. These findings suggest that the different localizations or different cell-cell interactions might affect the function of ILC2s. Furthermore, generally, ILC2s are thought to be tissue-resident cells; however, they occasionally migrate to other tissues and perform a new role; this supports the importance of the microenvironment for their function. We summarize here the current understanding of how the microenvironment controls ILC2 localization and function with the aim of promoting the development of novel diagnostic and therapeutic methods.


Assuntos
Comunicação Celular/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Microambiente Celular , Citocinas/imunologia , Células Epiteliais/imunologia , Humanos , Inflamação/imunologia
14.
Proc Natl Acad Sci U S A ; 116(25): 12226-12231, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160456

RESUMO

The 9th-15th century Angkorian state was Southeast Asia's greatest premodern empire and Angkor Wat in the World Heritage site of Angkor is one of its largest religious monuments. Here we use excavation and chronometric data from three field seasons at Angkor Wat to understand the decline and reorganization of the Angkorian Empire, which was a more protracted and complex process than historians imagined. Excavation data and Bayesian modeling on a corpus of 16 radiocarbon dates in particular demand a revised chronology for the Angkor Wat landscape. It was initially in use from the 11th century CE with subsequent habitation until the 13th century CE. Following this period, there is a gap in our dates, which we hypothesize signifies a change in the use of the occupation mounds during this period. However, Angkor Wat was never completely abandoned, as the dates suggest that the mounds were in use again in the late 14th-early 15th centuries until the 17th or 18th centuries CE. This break in dates points toward a reorganization of Angkor Wat's enclosure space, but not during the historically recorded 15th century collapse. Our excavation data are consistent with multiple lines of evidence demonstrating the region's continued ideological importance and residential use, even after the collapse and shift southward of the polity's capital. We argue that fine-grained chronological analysis is critical to building local historical sequences and illustrate how such granularity adds nuance to how we interpret the tempo of organizational change before, during, and after the decline of Angkor.


Assuntos
Arqueologia , Religião/história , Arquitetura/história , Camboja , Cultura , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História Medieval , Humanos
15.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361843

RESUMO

Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) thermogenesis has emerged as an attractive tool for anti-obesity. Although miR-143 has been reported to promote white adipocyte differentiation, its role in BAT remains unclear. In our study, we found that during HFD-induced obesity, the expression of miR-143 in BAT was significantly reduced, and the expression of miR-143 in WAT first increased and then decreased. Knockout (KO) of miR-143 with CRISPR/Cas9 did not affect the energy metabolism of normal diet fed mice and brown adipocyte differentiation but inhibited the differentiation of white adipocytes. Importantly, during high fat diet-induced obesity, miR-143KO significantly reduced body weight, and improved energy expenditure, insulin sensitivity, and glucose tolerance. Further exploration showed that miR-143KO reduced the weight of adipose tissue, promoted mitochondrial number and functions, induced thermogenesis and lipolysis of BAT, increased lipolysis, and inhibited lipogenesis of white adipose tissue (WAT). Our study considerably improves our collective understanding of the function of miR-143 in adipose tissue and its potential significance in anti-obesity and provides a new avenue for the management of obesity through the inhibition of miR-143 in BAT and WAT.


Assuntos
Tecido Adiposo Marrom , MicroRNAs , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Adipogenia/genética , Camundongos Knockout , Termogênese/genética , Tecido Adiposo Branco/metabolismo , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293005

RESUMO

Two different types of adipose depots can be observed in mammals: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary role of WAT is to deposit surplus energy in the form of triglycerides, along with many metabolic and hormonal activities; as thermogenic tissue, BAT has the distinct characteristic of using energy and glucose consumption as a strategy to maintain the core body temperature. Under specific stimuli-such as exercise, cold exposure, and drug treatment-white adipocytes can utilize their extraordinary flexibility to transdifferentiate into brown-like cells, called beige adipocytes, thereby acquiring new morphological and physiological characteristics. For this reason, the process is identified as the 'browning of WAT'. We evaluated the ability of some drugs, including GW501516, sildenafil, and rosiglitazone, to induce the browning process of adult white adipocytes obtained from differentiated mesenchymal stromal cells (MSCs). In addition, we broadened our investigation by evaluating the potential browning capacity of IRISIN, a myokine that is stimulated by muscular exercises. Our data indicate that IRISIN was effective in promoting the browning of white adipocytes, which acquire increased expression of UCP1, increased mitochondrial mass, and modification in metabolism, as suggested by an increase of mitochondrial oxygen consumption, primarily in presence of glucose as a nutrient. These promising browning agents represent an appealing focus in the therapeutic approaches to counteracting metabolic diseases and their associated obesity.


Assuntos
Adipócitos Brancos , Células-Tronco Mesenquimais , Animais , Adipócitos Brancos/metabolismo , Fibronectinas/metabolismo , Rosiglitazona/farmacologia , Citrato de Sildenafila/farmacologia , Medula Óssea/metabolismo , Metabolismo Energético , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glucose/metabolismo , Triglicerídeos/metabolismo , Mamíferos/metabolismo
17.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216219

RESUMO

Pancreatic steatosis associates with ß-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo Branco/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Pâncreas/fisiologia , Adipócitos/fisiologia , Adipogenia/genética , Animais , Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células Estromais/fisiologia , Transcriptoma/genética
18.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563150

RESUMO

The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Metabolismo Energético , Exercício Físico , Humanos , Obesidade/metabolismo , Obesidade/terapia , Cidade de Roma , Termogênese
19.
J Cell Physiol ; 236(7): 5399-5410, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368224

RESUMO

Cancer cachexia is a complex syndrome that is associated with thermogenic gene regulation. Currently, although some studies have reported the link between exosomes and cancer cachexia in a few types of cancer, the underlying mechanisms remain poorly understood. In this study, we tried to identify whether exosomes derived from colorectal cancer could affect lipolysis in vitro and in vivo. Here, we collected the tissue samples from 48 patients with colorectal cancer (47.91% females and mean age 55 ± 8.20) and 48 healthy people at the First Affiliated Hospital of Nanjing Medical University to detect the miR-146-5p expression. Here, we found that cancer cells released exosomes induced white adipose tissues (WATs) browning and accelerated lipolysis. We also demonstrated that miR-146b-5p was enriched in cancer-related exosomes. Overexpression miR-146b-5p resulted in increased WAT browning, decreased oxygen consumption, and fat mass loss (14.57%). The further study identified that miR-146b-5p could directly repress the downstream gene homeodomain-containing gene C10 (HOXC10), thereby regulating lipolysis. Therefore, our results indicated that cancer cells derived from exosomal miR-146b-5p played an essential role in WAT browning. Inhibition of cancer-related exosomes might be necessary for improving the cachexia condition.


Assuntos
Tecido Adiposo/metabolismo , Caquexia/metabolismo , Neoplasias Colorretais/complicações , Lipólise/fisiologia , MicroRNAs/metabolismo , Adulto , Idoso , Animais , Caquexia/etiologia , Caquexia/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Exossomos/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
20.
Am J Physiol Endocrinol Metab ; 320(2): E333-E345, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252252

RESUMO

We studied the metabolic phenotype of a novel Ucp1-LUC-iRFP713 knock-in reporter gene mouse model originally generated to monitor endogenous Ucp1 gene expression. Both reporter mice and reporter cells reliably reflected Ucp1 gene expression in vivo and in vitro. We here report an unexpected reduction in UCP1 content in homozygous knock-in (KI) reporter mice. As a result, the thermogenic capacity of KI mice stimulated by norepinephrine was largely blunted, making them more sensitive to an acute cold exposure. In return, these reporter mice with reduced UCP1 expression enabled us to investigate the physiological role of UCP1 in the prevention of weight gain. We observed no substantial differences in body mass across the three genotypes, irrespective of the type of diet or the ambient temperature, possibly due to the insufficient UCP1 activation. Indeed, activation of UCP1 by daily injection of the selective ß3-adrenergic receptor agonist CL316,243 resulted in significantly greater reduction of body weight in wild-type mice than in KI mice. Taken together, we conclude that the intact expression of UCP1 is essential for cold-induced thermogenesis but the presence of UCP1 per se does not protect mice from diet-induced obesity.NEW & NOTEWORTHY To study the functional role of UCP1-dependent brown adipose tissue thermogenesis for energy balance, new animal models are needed. By metabolic phenotyping of a novel mouse model with low UCP1 levels in brown fat, we demonstrate that the susceptibility to diet-induced obesity is not increased despite impaired cold-induced thermogenic capacity. Brown fat requires pharmacological activation to promote negative energy balance in diet-induced obese mice.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Dieta Hiperlipídica , Obesidade/patologia , Proteína Desacopladora 1/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Termogênese , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa