Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
Mass Spectrom Rev ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556789

RESUMO

Zwitterionic ring-expansion polymerization (ZREP) is a polymerization method in which a cyclic monomer is converted into a cyclic polymer through a zwitterionic intermediate. In this review, we explored the ZREP of various cyclic polymers and how mass spectrometry assists in identifying the product architectures and understanding their intricate reaction mechanism. For the majority of polymers (from a few thousand to a few million Da) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is the most effective mass spectrometry technique to determine the true molecular weight (MW) of the resultant product, but only when the dispersity is low (approximately below 1.2). The key topics covered in this study were the ZREP of cyclic polyesters, cyclic polyamides, and cyclic ethers. In addition, this study also addresses a number of other preliminary topics, including the ZREP of cyclic polycarbonates, cyclic polysiloxanes, and cyclic poly(alkylene phosphates). The purity and efficiency of those syntheses largely depend on the catalyst. Among several catalysts, N-heterocyclic carbenes have exhibited high efficiency in the synthesis of cyclic polyesters and polyamides, whereas tris(pentafluorophenyl)borane [B(C6F5)3] is the most optimal catalyst for cyclic polyether synthesis.

2.
Proc Natl Acad Sci U S A ; 119(28): e2116675119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867753

RESUMO

Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.


Assuntos
Materiais Biocompatíveis , Colágeno , Hidrogéis , Engenharia Tecidual , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Colágeno/química , Hidrogéis/química , Alicerces Teciduais/química
3.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634773

RESUMO

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Assuntos
Hidrogéis , Hidrogéis/química , Humanos , Dispositivos Eletrônicos Vestíveis , Congelamento , Ligação de Hidrogênio , Eletricidade Estática , Condutividade Elétrica
4.
Small ; 20(40): e2400784, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38837286

RESUMO

Marine biofouling is a complex and dynamic process that significantly increases the carbon emissions from the maritime industry by increasing drag losses. However, there are no existing non-toxic marine paints that can achieve both effective fouling reduction and efficient fouling release. Inspired by antifouling strategies in nature, herein, a superoleophobic zwitterionic nanowire coating with a nanostructured hydration layer is introduced, which exhibits simultaneous fouling reduction and release performance. The zwitterionic nanowires demonstrate >25% improvement in fouling reduction compared to state-of-the-art antifouling nanostructures, and four times higher fouling-release compared to conventional zwitterionic coatings. Fouling release is successfully achieved under a wall shear force that is four orders of magnitude lower than regular water jet cleaning. The mechanism of this simultaneous fouling reduction and release behavior is explored, and it is found that a combination of 1) a mechanical biocidal effect from the nanowire geometry, and 2) low interfacial adhesion resulting from the nanostructured hydration layer, are the major contributing factors. These findings provide insights into the design of nanostructured coatings with simultaneous fouling reduction and release. The newly established synthesis procedure for the zwitterionic nanowires opens new pathways for implementation as antifouling coatings in the maritime industry and biomedical devices.

5.
Small ; 20(16): e2308499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009797

RESUMO

Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge. Herein, a zwitterionic COF material bearing positive ammonium ions and negative sulphonic acid ions is developed. Free-standing COF membrane with adjustable thickness is constructed via surface-initiated polymerization of COF monomers. The porosity, continuity, and stability of the membranes are demonstrated via the transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) characterization. The rigidity of the COF structure avoids swelling in aqueous solution, which improves the chemical stability of the proton exchange membranes and improves the performance stability. In the higher humidity range (50-90%), the prepared zwitterionic COF membrane exhibits superior capability in retaining the conductivity compared to COF membrane merely bearing sulphonic acid group. The established strategy shows the potential for the application of zwitterionic COF in the proton exchange membrane fuel cells.

6.
Small ; 20(12): e2307042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946682

RESUMO

Water stability is a crucial issue always addressed for commercial practical application of perovskite quantum dots (QDs). Recent advances in ligand engineering for in situ synthesis of water-stable perovskite QDs have attracted growing interest. However, the exact mechanism remains unclear. Here, the function of 4-bromobutyric acid (BBA) and oleylamine (OLA) is systematically studied in water-stable CsPbX3 (X = Br and I) QDs and confirms that the zwitterionic ligands generated in situ by BBA and OLA are anchored on the QDs surface, thus preventing water from penetrating into the QDs. Cs4PbBr6 intermediate crystal found in the crystal structure evolution process of CsPbX3 QD further reveals a complete crystallization process: PbX2 + CsX + Br- → Cs4PbBr6 crystals + X-→ CsPbX3 QDs + Br-. Furthermore, it is found that the solvent coordination of the precursor solution has a significant effect on the crystallinity of Cs4PbBr6 intermediate crystal, while the Rb+ doping can effectively passivate the surface defects of CsPbX3 QDs, thereby jointly achieving photoluminescence quantum yields (PLQY) of 94.6% for CsPbBr3 QDs (88.2% for CsPbI3 QDs). This work provides new insights and guiding ideas for the green synthesis of high-quality and water-stable perovskite QDs.

7.
Small ; : e2405789, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319480

RESUMO

Zwitterionic hydrogels exhibit great potential in biomedical applications due to their antifouling properties and biocompatibility. However, the single-network structure of pure zwitterionic hydrogels leads to a low toughness and strength, limiting their application in biomedical fields. In this work, a high entanglement sulfobetaine methacrylate-dopamine hydrogel (SBMA-DA-PE) with low cross-linker content and high monomer concentration is prepared by using a dopamine oxidative radical polymerization method. Compared to a regular zwitterionic hydrogel, the SBMA-DA-PE hydrogel exhibits a 5-fold increase in tensile fracture stress and a 10-fold increase in compressive fracture stress. The SBMA-DA-PE hydrogel possesses excellent mechanical properties (the maximum compressive stress ≥4.85 MPa, the maximum compressive strain ≥90%). Besides, the non-covalent interactions between catechol or ortho-quinones within the SBMA-DA-PE hydrogel, combined with strong intermolecular electrostatic interactions, endow the SBMA-DA-PE hydrogel with great self-healing capabilities and fatigue resistance. The SBMA-DA-PE hydrogel demonstrates low swellability and possesses good antifouling properties. Furthermore, the good printability and conductivity of the tough SBMA-DA-PE hydrogel endows it with new possibilities for developing biological 3D scaffolds and electronic devices. Overall, this work provides new insights into the preparation of zwitterionic hydrogels with high mechanical strength and multi-functionality for biomedical applications.

8.
Small ; 20(24): e2311811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372500

RESUMO

Amid growing interest in using body heat for electricity in wearables, creating stretchable devices poses a major challenge. Herein, a hydrogel composed of two core constituents, namely the negatively-charged 2-acrylamido-2-methylpropanesulfonic acid and the zwitterionic (ZI) sulfobetaine acrylamide, is engineered into a double-network hydrogel. This results in a significant enhancement in mechanical properties, with tensile stress and strain of up to 470.3 kPa and 106.6%, respectively. Moreover, the ZI nature of the polymer enables the fabrication of a device with polar thermoelectric properties by modulating the pH. Thus, the ionic Seebeck coefficient (Si) of the ZI hydrogel ranges from -32.6 to 31.7 mV K-1 as the pH is varied from 1 to 14, giving substantial figure of merit (ZTi) values of 3.8 and 3.6, respectively. Moreover, a prototype stretchable ionic thermoelectric supercapacitor incorporating the ZI hydrogel exhibits notable power densities of 1.8 and 0.9 mW m-2 at pH 1 and 14, respectively. Thus, the present work paves the way for the utilization of pH-sensitive, stretchable ZI hydrogels for thermoelectric applications, with a specific focus on harvesting low-grade waste heat within the temperature range of 25-40 °C.

9.
Small ; : e2405113, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440668

RESUMO

Zwitterionic membranes demonstrate excellent antifouling property in water purification. The covalent organic frameworks (COFs), due to the ordered channels and abundant organic functional groups, have distinct superiority in constructing zwitterionic surfaces.Here, the zwitterionic COF membrane is prepared with precise framework structures and uniform charge distribution. The negatively charged 4,4'-diaminobiphenyl-2,2'-sisulphonic acid sodium (SA) and positively charged ethidium bromide (EB) fragments are used to react with 1,3,5-triformylphloroglucinol (TP) at the gas-liquid interface to prepare zwitterionic COF membrane. The complementary charged fragments in the inter-layer and inner-layer facilitate the formation of continuous and tight hydration layer on the membrane surface and pore walls to resist the adsorption of pollutants. The zwitterionic COF membrane effectively resists both negatively charged bovine serum albumin and positively charged lysozyme pollutants with flux recovery ratio (FRR) of 97% and 85%, respectively. Furthermore, the regular nano-channels and balanced interactions between water and surface/pore walls of the zwitterionic membrane result in outstanding permeability of up to 146 L m-2 h-1 bar-1 and excellent dye/salt separation selectivity. The water permeation and antifouling mechanism of membranes are elucidated by experimental and molecular dynamics calculation. Zwitterionic COF membranes can find promising applications in preparing high-performance antifouling membranes.

10.
Small ; 20(42): e2402811, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38845061

RESUMO

In this study, a novel approach is introduced to address the challenges associated with structural instability and sluggish reaction kinetics of δ-MnO2 in aqueous zinc ion batteries. By leveraging zwitterionic betaine (Bet) for intercalation, a departure from traditional cation intercalation methods, Bet-intercalated MnO2 (MnO2-Bet) is synthesized. The positively charged quaternary ammonium groups in Bet form strong electrostatic interactions with the negatively charged oxygen atoms in the δ-MnO2 layers, enhancing structural stability and preventing layer collapse. Concurrently, the negatively charged carboxylate groups in Bet facilitate the rapid diffusion of H+/Zn2+ ions through their interactions, thus improving reaction kinetics. The resulting MnO2-Bet cathode demonstrates high specific capacity, excellent rate capability, fast reaction kinetics, and extended cycle life. This dual-function intercalation strategy significantly optimizes the electrochemical performance of δ-MnO2, establishing it as a promising cathode material for advanced aqueous zinc ion batteries.

11.
Exp Eye Res ; 243: 109911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663719

RESUMO

The tissues of the integument covering the ocular surface comprise a mucus membrane functioning as a protective physical barrier and has the ability to mount a defensive inflammatory response. Since lipid metabolism has a role in both of these functions, we studied normal membrane phospholipids (PL) of the cornea and bulbar conjunctiva to (1) determine baseline PL profiles of these tissues, (2) compare and contrast these individual PL metabolite profiles as well as groups of metabolites, and (3) describe pathway-specific metabolic interrelations among these tissues. Corneal and conjunctival tissue samples were isolated from rabbit eyes (n = 30) and extracted with chloroform-methanol using a modified Folch procedure. 31P nuclear magnetic resonance spectroscopy was used to qualitatively and quantitatively measure tissue PL profiles. The cornea and conjunctiva, respectively, have the following PL composition (mole % of total detected phospholipid): phosphatidylglycerol (PG) -, 0.4; lysophosphatidylethanolamine 1.2, -; phosphatidic acid -, 0.4; diPG (cardiolipin) 2.1, 3.5; unknown PL at the chemical shift of 0.13 δ 1.5, 0.9; ethanolamine plasmalogen 11.2, 13.0; phosphatidylethanolamine 11.5, 12.8; phosphatidylserine 8.9, 10.1; sphingomyelin 10.2, 10.7; lysophosphatidylcholine 0.9, 1.4; phosphatidylinositol 5.3, 5.3; phosphatidylcholine (PC) plasmalogen or alkylacylPC 2.2, 1.9; PC 45.1, 40.0. In addition, 28 PL metabolic indices were calculated from these data, which permitted pathway-specific lipid analyses. This study (1) establishes PL profiles of the two ocular tissues of the integument that cover the surface of the eye, (2) compares and contrasts indices comprised of ratios and combinations of PL, and (3) describes pathway-specific metabolic interrelations among these tissues to serve as baselines for studies involving the distribution of tissue phospholipids.


Assuntos
Túnica Conjuntiva , Córnea , Fosfolipídeos , Animais , Coelhos , Fosfolipídeos/metabolismo , Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolismo dos Lipídeos/fisiologia , Masculino
12.
Photochem Photobiol Sci ; 23(1): 65-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006523

RESUMO

The excited state relaxation dynamics of 2-(2'-hydroxyphenyl)benzothiazole (HBT) in the gas phase and the solvents have been explored experimentally and theoretically. However, the fundamental mechanism of its emission in aggregates is still unexplored. In this article, we have presented a detail investigation of solvent-regulated excited state (ES) reactions for HBT aggregates with the aid of several experimental and theoretical research. The careful investigation of solvatochromic and electrochemical behavior elucidates that the emission around 460 nm of HBT in DMSO and DMSO-water fraction correspond to the excited state internal charge transfer (ESICT). The quantum chemical analysis further supports this observation. The concentration-dependent 1H NMR and emission studies of HBT in DMSO revealed the formation of aggregates at higher concentrations that facilitate the charge transfer. The emission pattern of HBT in the AcN-water fraction demonstrates that the sequential internal charge transfer-proton transfer (ESICT-ESIPT) occurs in HBT aggregates. The pH studies show that HBT aggregates are potential ratiometric sensors for near-physiological pH ranges. Moreover, a ground-state zwitterionic conformation of HBT is observed in the basic medium formed by ground-state internal proton transfer (GSIPT). Overall, this study provides a better understanding of solvent-regulated ES reaction mechanism in the case of HBT aggregates and other substituted HBT compound aggregates published previously.

13.
Anal Bioanal Chem ; 416(22): 4849-4860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39008068

RESUMO

This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al3+ and anionic group -COO- of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al3+ and Cl-, the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.


Assuntos
Técnicas Biossensoriais , Condutividade Elétrica , Enzimas Imobilizadas , Glucose Oxidase , Glucose , Técnicas Biossensoriais/métodos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Enzimas Imobilizadas/química , Glucose/análise , Glucose/química , Hidrogéis/química , Humanos , Membranas Artificiais , Glicemia/análise
14.
Macromol Rapid Commun ; 45(5): e2300606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087799

RESUMO

Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.


Assuntos
Polímeros , Poliuretanos , Humanos , Poliuretanos/química , Propriedades de Superfície , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Supuração
15.
Macromol Rapid Commun ; : e2400234, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824415

RESUMO

Invisible aligners have been widely used in orthodontic treatment but still present issues with plaque formation and oral mucosa abrasion, which can lead to complicated oral diseases. To address these issues, hydrophilic poly(sulfobetaine methacrylate) (polySBMA) coatings with lubricating, antifouling, and antiadhesive properties have been developed on the aligner materials (i.e., polyethylene terephthalate glycol, PETG) via a simple and feasible glycidyl methacrylate (GMA)-assisted coating strategy. Poly(GMA-co-SBMA) is grafted onto the aminated PETG surface via the ring-opening reaction of GMA (i.e., "grafting to" approach to obtain G-co-S coating), or a polySBMA layer is formed on the GMA-grafted PETG surface via free radical polymerization (i.e., "grafting from" approach to obtain G-g-S coating). The G-co-S and G-g-S coatings significantly reduce the friction coefficient of PETG surface. Protein adsorption, bacterial adhesion, and biofilm formation on the G-co-S- and G-g-S-coated surfaces are significantly inhibited. The performance of the coatings remains stable after storage in air or artificial saliva for 2 weeks. Both coatings demonstrate good biocompatibility in vitro and is not caused irritation to the oral mucosa of rats in vivo over 2 weeks. This study proposes a promising strategy for the development of invisible aligners with improved performance, which is beneficial for oral health treatment.

16.
Macromol Rapid Commun ; : e2400623, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312123

RESUMO

Amino-acid-derived polyzwitterions and polybetaines (PBs) are two promising alternatives to non-ionic polymers, for example, to increase tumor permeability. In this study, amino-acid-derived polyzwitterions are synthesized and a strategy to quarternize the amine in the side chain functional group is developed to combine the advantages of both types. The functional monomer is polymerized via reversible addition-fragmentation chain-transfer polymerization for which a kinetic study is performed. Further, the impact of the permanent positive charge on amino-acid-derived polyzwitterions is studied based on two zwitterionic polymers obtained via post-polymerization modification (PPM) of Poly(N-acryloxysuccinimide) to allow good comparison between methylated and non-methylated polymers. Circular dichroism shows that the stereocenter remains intact during PPM. pH titration and ζ-potential measurements show that the methylated polymer has a negative ζ-potential over the measured pH range and, therefore, the polymer remains zwitterionic over a broader pH range than its non-methylated equivalent. Both polymers are well tolerated by mammalian cells up to concentrations of 1 mg mL-1. The study introduces a path to a new polymer class that combines the advantages of both PBs and amino-acid-derived polyzwitterions and highlights the impact a permanent charge has on the physiochemical properties.

17.
Macromol Rapid Commun ; : e2400499, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363615

RESUMO

Zwitterionic polymers are an important class of polymers with far-ranging applications. In the widely studied poly(meth)acrylate and poly(meth) acrylamide-based zwitterions, properties can be tuned by changing the nature of substituents attached to ammonium ions. However, these changes influenced salt tolerance of zwitterionic polymers only to a limited extent. Upon adding salt these polymers expanded in solution initially. Further increase in salt concentration caused the polymer chains to shrink similar to the common water soluble, uncharged polymers thereby deteriorating the viscosity of aqueous solutions. In contrast to the conventional poly(meth)acrylate and poly(meth)acrylamide-based zwitterions, zwitterionic copolymaleimides showed substituent dependent salt-tolerant nature. In the absence of any substituent on the polymer backbone such as zwitterionic poly(ethylene-alt-maleimide) (ZI-PEMA) the viscosity of salt solutions increased both with the increasing salt concentration as well as the concentration of polymer. This is likely due to the continuous expansion of polymer coil in salt solutions with increasing salt concentration caused primarily by the rigidity of the polymer backbone. ZI-PEMA also enhanced the saturation limit of mono- and divalent salts like sodium chloride and hydrated calcium bromide in water. This property is useful for various applications like fish curing, for making high-density fluids, refrigeration, etc. across various industrial sectors.

18.
Macromol Rapid Commun ; 45(11): e2400029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477018

RESUMO

Organic and polymer fluorescent nanomaterials are a frontier research focus. Here in this work, a series of fluorinated zwitterionic random copolymers end-attached with a quasi-chromophoric group of pyrene or tetraphenylethylene (TPE) are well synthesized via atom transfer radical polymerization with activators regenerated by electron transfer (ARGET ATRP). Those random copolymers with total degree of polymerization 100 or 200 are able to produce fluorescent single-chain nanoparticles (SCNPs) through intra-chain self-folding assembly with quite uniform diameters in the range of 10-20 nm as characterized by dynamic light scattering and transmission electron microscopy. By virtue of the segregation or confinement effect, both SCNPs functionalized with pyrene or TPE group are capable of emitting fluorescence, with pyrene tethered SCNPs exhibiting stronger fluorescence emission reaching the highest quantum yield ≈20%. Moreover, such kind of fluorescent SCNPs manifest low cytotoxicity and good cell imaging performance for Hela cells. The creation of fluorescent SCNPs through covalently attached one quasi-chromophore to the end of one fluorinated zwitterionic random copolymer provides an alternative strategy for preparing polymeric luminescence nanomaterials, promisingly serving as a new type of fluorescent nanoprobes for biological imaging applications.


Assuntos
Corantes Fluorescentes , Nanopartículas , Imagem Óptica , Polímeros , Humanos , Células HeLa , Nanopartículas/química , Polímeros/química , Corantes Fluorescentes/química , Estilbenos/química , Estrutura Molecular , Fluorescência , Halogenação , Pirenos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Polimerização
19.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735921

RESUMO

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Assuntos
Rim , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ligantes , Rim/diagnóstico por imagem , Rim/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Camundongos Endogâmicos BALB C , Humanos , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Nanopartículas de Magnetita/química , Nanopartículas/química
20.
J Sep Sci ; 47(14): e2400065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054584

RESUMO

A novel zwitterionic polymer grafted silica stationary phase, Sil-PZIC, was prepared by bonding poly(ethylene maleic anhydride) molecules on the surface of silica via multiple binding sites, followed by ammonolysis of maleic anhydride through a nucleophilic substitution reaction with ethylenediamine. The stationary phase was characterized by solid-state 13C nuclear magnetic resonance, zeta potential, and elemental analysis and the results show the successful encapsulation of zwitterionic polymer on the surface of silica. The chromatographic performance of Sil-PZIC was investigated by using nucleosides and nucleic bases as test analytes The variation of retention and separation performance of these model compounds were investigated by varying the chromatographic conditions such as the components of mobile phase, salt concentration, and pH. The results show that the retention of the Sil-PZIC phase was dominated by a hydrophilic partitioning mechanism accompanied by secondary interactions such as electrostatic and hydrogen bonding. In addition, saccharides and Amadori compounds were also well separated on the Sil-PZIC, indicating that the Sil-PZIC column has potential application for separation of the polar compound.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa