Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630172

RESUMO

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.


Assuntos
Albinismo , Perfilação da Expressão Gênica , Temperatura , Temperatura Baixa , Clorofila
2.
Curr Issues Mol Biol ; 46(7): 6508-6521, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39057030

RESUMO

Chloroplasts are organelles responsible for photosynthesis in plants, providing energy for growth and development. However, the genetic regulatory mechanisms underlying early chloroplast development in rice remain incompletely understood. In this study, we identified a rice seedling thermosensitive chlorophyll-deficient mutant, osltsa8, and the genetic analysis of two F2 populations suggested that this trait may be controlled by more than one pair of alleles. Through reciprocal F2 populations and QTL-seq technology, OsLTSA8 was mapped to the interval of 24,280,402-25,920,942 bp on rice chromosome 8, representing a novel albino gene in rice. Within the candidate gene region of OsLTSA8, there were 258 predicted genes, among which LOC_Os08g39050, LOC_Os08g39130, and LOC_Os08g40870 encode pentatricopeptide repeat (PPR) proteins. RNA-seq identified 18 DEGs (differentially expressed genes) within the candidate interval, with LOC_Os08g39420 showing homology to the pigment biosynthesis-related genes Zm00001d017656 and Sb01g000470; LOC_Os08g39430 and LOC_Os08g39850 were implicated in chlorophyll precursor synthesis. RT-qPCR was employed to assess the expression levels of LOC_Os08g39050, LOC_Os08g39130, LOC_Os08g40870, LOC_Os08g39420, LOC_Os08g39430, and LOC_Os08g39850 in the wild-type and mutant plants. Among them, the differences in the expression levels of LOC_Os08g39050 and LOC_Os08g39430 were the most significant. This study will contribute to further elucidating the molecular mechanisms of rice chloroplast development.

3.
Planta ; 260(4): 77, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164400

RESUMO

MAIN CONCLUSIONS: The albino phenotype of Agave angustifolia Haw. accumulates higher levels of phenylalanine and phenylpropanoids, while the green phenotype has a greater concentration of phenolic compounds. The metabolic consequences of chlorophyll deficiency in plants continue to be a captivating field of research, especially in relation to production of metabolic compounds. This study conducts a thorough analysis of the metabolome in green (G), variegated (V), and albino (A) phenotypes of Agave angustifolia Haw. Specifically, it examines the differences in the accumulation of compounds related to the phenylpropanoid and flavonoid biosynthesis pathways. Methanol extracts of leaf and meristem tissues from the three phenotypes grown in vitro were analyzed using liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UPLC-MS-QTOF) for untargeted metabolomics and triple quadrupole (QqQ) mass spectrometry for targeted metabolomic analyses. By employing these methods, we discovered notable differences in the levels of important metabolites such as L-phenylalanine, 4-hydroxyphenylpyruvic acid, and various flavonoids among the different phenotypes. The results of our study indicate that the A phenotype shows a significant increase in the levels of phenylalanine and phenylpropanoids in both leaf and meristem tissues. This is in contrast to a decrease in flavonoids, suggesting a metabolic reprogramming to compensate for the lack of chlorophyll. Significantly, compounds such as kaempferol-3-O-glucoside and rutin exhibited significant quantitative reduction in the A leaves, suggesting a subtle modification in the production of flavonols and potentially a changed mechanism for antioxidant protection. This study emphasizes the complex metabolic changes in A. angustifolia´s chlorophyll-deficient phenotypes, providing insight into the complex interplay between primary and secondary metabolism in response to chlorophyll deficiency. Our research not only enhances the comprehension of plant metabolism in albino phenotypes but also opens new avenues for exploring the biochemical and genetic basis of such adaptations, with potential biotechnological applications of these distinct plant variants.


Assuntos
Agave , Clorofila , Folhas de Planta , Metabolismo Secundário , Clorofila/metabolismo , Folhas de Planta/metabolismo , Agave/metabolismo , Flavonoides/metabolismo , Fenótipo , Metabolômica , Metaboloma , Fenilalanina/metabolismo , Meristema/metabolismo
4.
Plant Cell Environ ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222055

RESUMO

Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.

5.
Cereb Cortex ; 33(16): 9450-9464, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415464

RESUMO

Despite previous agreement of the absence of cortical column structure in the rodent visual cortex, we have recently revealed a presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of adult Long-Evans rats. In this study, we deepened understanding of characteristics of rat ODCs. We found that this structure was conserved in Brown Norway rats, but not in albino rats; therefore, it could be a structure generally present in pigmented wild rats. Activity-dependent gene expression indicated that maturation of eye-dominant patches takes more than 2 weeks after eye-opening, and this process is visual experience dependent. Monocular deprivation during classical critical period strongly influenced size of ODCs, shifting ocular dominance from the deprived eye to the opened eye. On the other hand, transneuronal anterograde tracer showed a presence of eye-dominant patchy innervation from the ipsilateral V1 even before eye-opening, suggesting the presence of visual activity-independent genetic components of developing ODCs. Pigmented C57BL/6J mice also showed minor clusters of ocular dominance neurons. These results provide insights into how visual experience-dependent and experience-independent components both contribute to develop cortical columns during early postnatal stages, and indicate that rats and mice can be excellent models to study them.


Assuntos
Dominância Ocular , Córtex Visual , Animais , Ratos , Camundongos , Ratos Long-Evans , Camundongos Endogâmicos C57BL , Córtex Visual/fisiologia , Neurônios/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37981006

RESUMO

We investigated the involvement of agouti-signaling proteins (ASIPs) in morphological pigmentation and physiological color change in flatfishes. We isolated ASIP1 and 2 mRNAs from the skin of starry flounder (Platichthys stellatus), and compared their amino acid (aa) structures to those of other animals. Then, we examined the mRNA expression levels of two ASIPs (Sf-ASIPs) in the pigmented ocular body and in the unpigmented blind body, as well as in the ordinary skin and in albino skin, in flatfishes. To investigate the role of Sf-ASIPs in physiological color change (color camouflage), we compared the expression of the two genes in two background colors (dark-green and white). Sf-ASIP1 cDNA had a 375-bp open reading frame (ORF) that encoded a protein consisting of 125 aa residues, and Sf-ASIP2 cDNA had a 402-bp ORF that encoded a protein consisting of 132 aa residues. RT-PCR revealed that the strongest Sf-ASIP1 and Sf-ASIP2 expression levels were observed in the eye and blind-skin, respectively. In Sf-ASIP1, the gene expression did not differ between the ocular-side skin and blind-side skin, nor between ordinary skin and abnormal skin of the fish. However, in Sf-ASIP2, the expression level was significantly higher in blind-side skin, compared to ocular-side skin, suggesting that the ASIP2 gene is related to the countershading body pigment pattern of the fish. In addition, the Sf-ASIP2 gene expression level was lower in the pigmented spot regions than in the unpigmented spot regions of the malpigmented pseudo-albino skins on the ocular side, implying that ASIP2 is responsible for the ocular-side pseudo-albino. Additionally, ASIP2 gene expression in the blind-side skin of ordinary fish was enhanced by a white tank, implying that a bright background color could inhibit hypermelanosis in the blind-side skin of cultured flounder by increasing the activity of the Sf-ASIP2 gene. However, we did not find any relationship of ASIPs with camouflage color changes. In conclusion, the ASIP2 gene is related to the morphological pigmentation (countershading and malpigmentation) of the skin in starry flounder, but not with physiological color changes (color camouflage) in the ocular-side skin.


Assuntos
Dasyproctidae , Linguados , Linguado , Animais , Linguado/metabolismo , DNA Complementar/metabolismo , Pigmentação/genética , Linguados/genética
8.
Toxicol Mech Methods ; 34(4): 335-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38084769

RESUMO

Parkinson's disease (PD) is often accompanied by depression, which may appear before motor signs. Oleanolic acid (OA), a pentacyclic triterpenoid substance, have many pharmacological properties. However, its efficacy in treating PD-related chronic unpredictable stress (CUS) is unknown. Our study used behavioral, biochemical, and immunohistochemical techniques to assess how OA affected PDrelated CUS. Rotenone (1 mg/kg i.p. for first 21 days) was used to induce Parkinsonism, and modest psychological & environmental stresses generated CUS (from day 22 to day 43) in animals. The study included daily i.p.administration of OA (5, 10, and 20 mg/kg) from day 1 to day 57 in male swiss albino mice. Animals were evaluated for behavioral, biochemical parameters, neurotransmitters, and immunohistochemical expression following the treatment. Results of the study revealed that treatment with OA at all doses alleviated the core symptoms of CUS linked to PD and improved motor and non-motor function. OA therapy significantly lowered IL-1ß, TNF-α (p < 0.01, < 0.01, < 0.001), IL-6 (p < 0.05, < 0.01, < 0.001), oxidative stress (p < 0.05, < 0.01, < 0.01), and elevated norepinephrine (p < 0.05, < 0.01, < 0.01), dopamine, and serotonin (p < 0.05, < 0.01, < 0.001) levels. Moreover, OA therapy substantially reduced α-synuclein (p < 0.05, < 0.01, < 0.01) aggregation and increased BDNF (p < 0.05, < 0.01, < 0.001) & Nrf-2 (p < 0.05, < 0.01, < 0.01) levels, which boosts neuronal dopamine survival. The study's findings indicated that OA ameliorates depressive-like behavior persuaded by CUS in PD, decreases neuroinflammation, and improves neurotransmitter concentration via activating Nrf2-BDNF-dopaminergic pathway.


Oleanolic acid reversed the CUS-induced depressive behaviors in Parkinson's diseaseOleanolic acid alleviated oxidative stress, neuroinflammation, and improved brain neurotransmitter concentrationOleanolic acid reduced the α-synuclein aggregation and activated Nrf2-BDNF-dopaminergic signaling pathways to ameliorate motor and depressive behaviors in parkinsonian mice.

9.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755297

RESUMO

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


Assuntos
Anticolesterolemiantes , Bacillus amyloliquefaciens , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Obesidade , Animais , Camundongos , Ratos , Células 3T3-L1/metabolismo , Células 3T3-L1/microbiologia , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Anticolesterolemiantes/farmacologia , Bacillus amyloliquefaciens/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/microbiologia , Ratos Wistar , RNA Ribossômico 16S/genética
10.
Mol Biol Rep ; 50(12): 9875-9886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856062

RESUMO

BACKGROUND: Diabetic Mellitus is characterized by a lack or failure of insulin to bind to its target receptor or failure of the pancreas to yield insulin. This study evaluated the antihyperglycemic activity of 14-deoxy, 11, 12-didehydro andrographolide on streptozotocin-nicotinamide-induced type 2 diabetic rats. Diabetic conditions were induced by administering streptozotocin at a dosage of 45 mg/kg body weight and nicotinamide at a dosage of 110 mg/kg body weight through intraperitoneal injection. MATERIALS AND METHODS: Diabetic-induced rats were treated with 14-deoxy, 11, 12-didehydro andrographolide concentrations between 10 and 500 mg/kg body weight. The blood glucose level and body weight of the rats were periodically examined. The pancreas was isolated and the histopathological staining was performed after making fine sections of the pancreas using a microtome. The influence of 14-deoxy, 11, 12-didehydro andrographolide on the expression level of various insulin signaling cascades was determined with q-PCR and western blotting. RESULTS: The blood glucose level of the diabetic-induced rats was significantly (p < 0.05) higher when compared with the control group and resulted in a drop in the blood glucose level of the diabetic rats. Oral glucose level was also reduced in the treatment group and no significant reduction was noted in the untreated. The lipid profiling revealed that the atherogenic index and cholesterol ratio was increased in the diabetic group over the control group. Upregulation of the insulin cascades like IRTK and GLUT4 was observed by the q-PCR and upregulation of GLUT4 and IR-ß was observed by the western blot analysis. CONCLUSION: Overall, the finding indicates that 14-deoxy, 11, 12-didehydro andrographolide exhibited antihyperglycemic activity by modulating the expression of insulin cascades.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Hipoglicemiantes , Estreptozocina/efeitos adversos , Glicemia/metabolismo , Niacinamida/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Extratos Vegetais/farmacologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peso Corporal
11.
Pestic Biochem Physiol ; 195: 105545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666616

RESUMO

The present study assessed the toxicological, biochemical, and mechanism of action of Colocasia esculenta leaf extract (CELE) on Wistar albino rat and on cholinergic, antioxidant, and antiinflammatory enzymes in Sitophilus zeamais. This was with a view to assessing the potential benefits and safety profile of CELE as a natural alternative for insect control. The bioactivity of the fraction was evaluated using insecticidal and repellent activities against colonies of Sitophilus zeamais to obtain a VLC-chromatographed fraction which was spectroscopically characterized and investigated for enzyme inhibition. The results revealed the ethyl acetate fraction (EAF) as the most potent one with LC50 6.198 µg/ml and 6.6 ± 0.5 repellency. The EAF had an LD50 > 5000 mg/kg but repeated dose >800 mg/kgbw po administration caused significant (p < 0.05) increase in liver and kidney function biomarkers accompanied with elevated atherogenic and coronary indices. Also, renal and hepatomorphological lesions increased in a dose-dependent manner. The High-Performance Liquid Chromatography analysis profiled 7 unknown compounds while the GC-qMS revealed 103 compounds in the CC6 fraction allowing for their identification, quantification, and providing insights into the biological activities and its potentials application. The CC6 fraction inhibited glutathione S-transferase (IC50 = 2265.260.60 mg/ml), superoxide dismutase (IC50 = 1485.300.78 mg/ml), catalase (IC50 = 574.471.57 mg/ml), acetyl cholinesterase (IC50 = 838.280.51 mg/ml), butyryl cholinesterase (IC50 = 1641.76 ± 1.14 mg/ml) and upregulated cyclooxygenase-2 (IC50 = 37.89 ± 0.15 mg/ml). Based on the result of the study, it could be inferred that the unidentified compounds present in the EAF exhibit strong insecticidal properties. The study concluded that the acute toxicity of the potent fraction showed no abnormal clinical toxic symptoms while a repeated dose of the extract in sub-acute studies showed a toxic effect that is dose-dependent. The mechanism of action of the purified fraction could be said to be by inhibition of cholinergic and antioxidant enzymes. However, the potent fraction also upregulated the activity of anti-inflammatory enzymes. Hence, regulated amount of CELE at a repeated dose <800 mg/kgbw could be considered for use as an anti-pest agent in Integrated Pest Management of Sitophilus zeamais.


Assuntos
Antioxidantes , Colocasia , Ratos , Animais , Antioxidantes/farmacologia , Colinesterases , Extratos Vegetais/toxicidade
12.
Drug Chem Toxicol ; : 1-7, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455492

RESUMO

Knowledge and implications of atrazine in waters from rural areas in Nigeria remain diminutive. Meanwhile, recent findings have shown presence of atrazine residue in water bodies. Atrazine level in six communities (Mamu, Oru, Ilaporu, Awa, Ijebu Igbo, and Ago-Iwoye) of Ijebu North local government, Ogun State, Nigeria using 69 hand-dug wells (HDWs), 40 boreholes (BHs) and four streams are monitored. Value of atrazine recorded was employed to appraise the implication on some hematological and biochemical parameters in relation to human health through dermal and ingestion contact using male albino rats. Highest atrazine of 0.08 mg/L was found in HDW of Ago-Iwoye out of 41 hand dug wells assessed, alongside 22 BH and four streams tested positive to atrazine, while the Oru documented lowest concentration with 0.01 mg/L. Ingestion and dermal hazard index (HI) were lower in adults than children and below acceptable limits in each community. Atrazine concentration at 0.01, 0.03, 0.04, and 0.08 mg/L in waters may not induce significant alteration in the hematological and some biochemical parameters of the exposed animal, while concentration at 0.04 and 0.08 mg/L might alter the blood glucose, albumin, and bilirubin. This is the first study to report atrazine in rural community waters in relation to human health in Nigeria.

13.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686006

RESUMO

To elucidate the molecular mechanisms underlying the differential metabolism of albino (white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequencing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L. var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var. Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chlorophyll/carotene ratio may be the biochemical basis for albino characteristics in the 'Zhongbaiyihao' pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including DFR, F3'5'H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple 'Baitangziya' pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-reductase both showed high expression levels compared to the green one, which indicated that albino 'Zhongbaiyihao' pericarp had a higher chlorophyll synthesis capacity than 'Jinxuan'. Meanwhile, chlorophyllase (CLH, CSS0004684) was lower in 'Baitang' than in 'Jinxuan' and 'Zhongbaiyihao' pericarp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509), bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp, suggesting that transcription factors played a role in regulating tea pericarp coloration. These findings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing functional components of tea pericarp.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Clorofila , Perfilação da Expressão Gênica , Chá/genética , Fatores de Transcrição
14.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833903

RESUMO

Albino seedlings that arise during seed reproduction can have a significant impact on plant growth and breeding. In this research, we present the first report of albino occurrences in the seed reproduction process of Prunus salicina and describe the cytological, physiological, and transcriptomic changes observed in albino seedlings. The albino seedlings which were observed in several plum cultivars exhibited abnormal chloroplast ultrastructure and perturbed stomatal structure. Compared to normal seedlings, the photosynthetic pigment contents in albino seedlings decreased by more than 90%, accompanied by significant reductions in several chlorophyll fluorescence parameters. Furthermore, substantially changed photosynthetic parameters indicated that the photosynthetic capacity and stomatal function were impaired in albino seedlings. Additionally, the activities of the antioxidant enzyme were drastically altered against the background of higher proline and lower ascorbic acid in leaves of albino seedlings. A total of 4048 differentially expressed genes (DEGs) were identified through transcriptomic sequencing, and the downregulated DEGs in albino seedlings were greatly enriched in the pathways for photosynthetic antenna proteins and flavonoid biosynthesis. GLK1 and Ftsz were identified as candidate genes responsible for the impaired chloroplast development and division in albino seedlings. Additionally, the substantial decline in the expression levels of examined photosystem-related chloroplast genes was validated in albino seedlings. Our findings shed light on the intricate physiological and molecular mechanisms driving albino plum seedling manifestation, which will contribute to improving the reproductive and breeding efforts of plums.


Assuntos
Prunus domestica , Perfilação da Expressão Gênica , Fotossíntese/genética , Melhoramento Vegetal , Folhas de Planta/genética , Prunus domestica/genética , Plântula/metabolismo , Transcriptoma , China
15.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373460

RESUMO

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Assuntos
Camellia sinensis , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Camellia sinensis/genética , Fotossíntese , Tilacoides/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo
16.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894876

RESUMO

Rice false smut (RFS) caused by Villosiclava virens (anamorph: Ustilaginoidea virens) has become one of the most destructive fungal diseases to decrease the yield and quality of rice grains. An albino strain LN02 was isolated from the white RFS balls collected in the Liaoning Province of China in 2019. The strain LN02 was considered as a natural albino mutant of V. virens by analyzing its phenotypes, internal transcribed spacer (ITS) conserved sequence, and biosynthesis gene clusters (BGCs) for secondary metabolites. The total assembled genome of strain LN02 was 38.81 Mb, which was comprised of seven nuclear chromosomes and one mitochondrial genome with an N50 value of 6,326,845 bp and 9339 protein-encoding genes. In addition, the genome of strain LN02 encoded 19 gene clusters for biosynthesis of secondary metabolites mainly including polyketides, terpenoids and non-ribosomal peptides (NRPs). Four sorbicillinoid metabolites were isolated from the cultures of strain LN02. It was found that the polyketide synthase (PKS)-encoding gene uspks1 for ustilaginoidin biosynthesis in strain LN02 was inactivated due to the deletion of four bases in the promoter sequence of uvpks1. The normal uvpks1 complementary mutant of strain LN02 could restore the ability to synthesize ustilaginoidins. It demonstrated that deficiency of ustilaginoidin biosynthesis is the cause of albinism for RFS albino strain LN02, and V. virens should be a non-melanin-producing fungus. This study further confirmed strain LN02 as a white phenotype mutant of V. virens. The albino strain LN02 will have a great potential in the development and application of secondary metabolites. The physiological and ecological functions of ustilaginoidins in RFS fungus are needed for further investigation.


Assuntos
Hypocreales , Oryza , Oryza/genética , Hypocreales/genética , Hypocreales/metabolismo , Família Multigênica , Variação Genética , Doenças das Plantas/microbiologia
17.
J Food Sci Technol ; 60(3): 1175-1184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908342

RESUMO

This study aimed to evaluate anti-diabetic potential of functional camel milk yogurt enriched with Cinnamomum verum and Stevia rebaudiana that not only mask its peculiar flavour rather have an antidiabetic effect as well. Sixty-three pathogen free STZ-induced albino Wistar rats were categorized into 7 groups on the basis of treatments. From each treatment group three animals were dissected periodically at 0, 7 and 21 days of study to determine the effect of all treatments on physicochemical parameters, serum glucose, serum chemistry and haematology. The study revealed that the mean blood glucose level in the untreated control group was within normal range (100-108 mg/dl) while there was noticeable decrease in mean blood glucose level of all the treated groups during three weeks' trial. Decline in blood glucose level (46%) was higher in animal group containing functional camel milk yogurt (T4) at 3rd week of trial as compared to other treatments.

18.
Curr Issues Mol Biol ; 44(6): 2529-2541, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735613

RESUMO

The complexity of prescribing safe and effective drug therapy is still challenging. Due to the increased number of medications taken by patients, the potential for drug-drug interactions has clinically important consequences. This study focuses on the potential drug-drug interaction between azithromycin and etoricoxib and the possibility of counteracting this adverse reaction by giving ascorbic acid intraperitoneally to male albino rats. Sixty adult male albino rats weighing 150-180 g were used. The rats were allocated into six equal groups. One group was a control, and the others were given azithromycin, etoricoxib, either alone or combination, with one group treated with ascorbic acid and the last group treated with the drug combination and ascorbic acid. Blood samples were collected for measuring AST, ALT, LDH, CK-MB, and troponin alongside antioxidant enzymes and histopathological examination for both liver and heart tissue. The results showed both hepatic and cardiac damage in azithromycin and etoricoxib groups represented by increasing levels of heaptoc enzymes (ALT, AST, LDH, CK-MB, and troponin) with declining antioxidant enzymes and elevation of malondialdehyde and the appearance of hepatic and cardiac toxicities. Upon administration, ascorbic acid ameliorated all the mentioned biochemical parameters. In conclusion, ascorbic acid has great antioxidant capacities and hepatic and cardiac ameliorative effects and can alleviate drug interaction toxicity.

19.
Funct Integr Genomics ; 22(2): 251-260, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35211836

RESUMO

Albino tea plants generally have higher theanine, which causes their tea leaves to taste fresher, and they are an important mutant for the breeding of tea plant varieties. Earlier, we reported an albino germplasm, 'Menghai Huangye' (MHHY), from Yunnan Province and found that it has a lower chlorophyll content during the yellowing stage, but the mechanism underlying low chlorophyll and the yellowing phenotype is still unclear. In this study, the pigment contents of MHHY_May (yellowing, low chlorophyll), MHHY_July (regreening, normal chlorophyll), and YK10_May (green leaves, normal chlorophyll) were determined, and the results showed that the lower chlorophyll content might be an important reason for the formation of the yellowing phenotype of MHHY. Through transcriptome sequencing, we obtained 654 candidates for differentially expressed genes (DEGs), among which 4 genes were related to chlorophyll synthesis, 10 were photosynthesis-related, 34 were HSP family genes, and 19 were transcription factor genes. In addition, we analysed the transcription levels of the key candidate genes in MHHY_May and MHHY_July and found that they are consistent with the expression trends in MHHY_May and YK10_May, which further indicates that the candidate differential genes we identified are likely to be key candidate factors involved in the low chlorophyll content and yellowing of MHHY. In summary, our findings will assist in revealing the low chlorophyll content of MHHY and the formation mechanism of yellowing tea plants and will be applied to the selection and breeding of albino tea cultivars in the future.


Assuntos
Camellia sinensis , Transcriptoma , Camellia sinensis/genética , China , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
20.
Genes Cells ; 26(1): 31-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33147376

RESUMO

The periodic albino mutant of Xenopus laevis is a recessive mutant, in which reduced amounts of melanin appear in the retinal pigment epithelium (RPE) and in melanophores at the late embryonic stage, after which both RPE and melanophores gradually depigment. Three types of pigment cells (melanophores, iridophores and xanthophores) have been reported to be affected in this albino. However, the causative gene of the periodic albinism remains unknown. Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that affects humans and mice, which is caused by defective biogenesis of lysosome-related organelles (LROs). Two subgenomes (L and S) are present in the allotetraploid frog X. laevis. Comparison of genes between the chromosomes 1L and 1S revealed that the HPS type 4 (hps4) gene was present only in chromosome 1L. In the albino mutant, a 1.9 kb genomic deletion in the hps4.L gene including exons 7 and 8 caused a premature stop codon to create a truncated Hps4 protein. Injection of wild-type hps4.L mRNA into mutant embryos rescued the albino phenotype. These findings indicate that hps4 is a causative gene for the periodic albinism in X. laevis. The phenotype of this mutant should be reassessed from the perspective of LRO biogenesis.


Assuntos
Albinismo/genética , Deleção de Genes , Proteínas de Xenopus/genética , Albinismo/metabolismo , Animais , Éxons , Poliploidia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa