Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(8): 8846-8856, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33985778

RESUMO

California is the leading state for the production of almonds, with more than 400,000 bearing hectares of orchards that produced approximately 1 billion kilograms of shelled nuts in 2017. Almond hulls (AH) are a regional by-product feedstuff fed predominantly to dairy cattle in California. A 2012 study surveyed 40 dairy farms in California and found that 39 out of 104 total mixed rations contained AH, with a mean daily feeding rate of 1.45 kg/cow. In 2017, approximately 2 billion kilograms of AH was produced. At a feeding rate of 1.45 kg/cow daily, even if all 1.7 million lactating cows in California are consuming AH, there will be a surplus of AH on the market as the approximately 130,000 nonbearing hectares come into nut production. Therefore, the potential of feeding varying amounts of AH to lactating dairy cows was investigated using 12 Holstein cows with 4 primiparous and 8 multiparous cows. The dietary treatments were 4 total mixed rations containing 0, 7, 13, or 20% AH. The AH used contained 12.8% crude fiber (as-is basis), which was below the 15% legal limit set by state feed regulations. Diets were formulated so that as the inclusion rate of AH increased, the amount of steam-flaked corn and soyhull pellets decreased and soybean meal inclusion increased. Experimental design was a replicated 4 × 4 Latin square. Diet had a cubic effect on actual milk yield, energy-corrected milk yield, and dry matter intake, with the 7% AH diet having the highest values and the 13% AH diet having the lowest. The percent and yield of total solids and the yields of lactose and fat did not differ with diet, but percent and yield of protein declined linearly with increased AH inclusion, and fat percent increased linearly. Apparent total-tract digestibilities of dry matter and organic matter were higher with the inclusion of AH in the diet. Total percentage of the day spent ruminating increased linearly with higher amounts of AH. Overall, this work demonstrated that AH can be fed at varying amounts, up to 20% of the diet, to lactating dairy cows to support high levels of milk production and that increasing amounts of AH (up to 20%) in the diet could lead to improved digestibility and milk fat percentage but decreased milk protein production.


Assuntos
Lactação , Prunus dulcis , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Rúmen , Silagem , Zea mays
2.
J Sci Food Agric ; 98(15): 5893-5900, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29999178

RESUMO

BACKGROUND: The increasing production of almonds worldwide has resulted in the significant generation of byproduct streams that require end uses. One potential use for byproducts is for cultivation of additional food sources including insects. Studies were performed to determine if black soldier fly larvae (Hermetia illucens L.) could be cultivated on almond byproducts (hulls and shells) and to examine the effect of aeration and moisture on larvae growth and hull composition. RESULTS: Increasing aeration from 0.04 to 0.36 mL min-1 g dry weight-1 tripled the harvest weight of larvae and increased larvae yield by a factor of five. Larvae calcium content increased by 18% with an increase in aeration from 0.04 to 0.95 mL min-1 g dry weight-1 . Moisture content also affected harvest dry weight and yield; increasing moisture content from 480 g kg-1 (wet basis) to 680 g kg-1 increased harvest weight by 56% and yield by a factor of 2. Variables did not affect larvae methionine and cysteine content. Low moisture content and aeration rate yielded an environment that supported microbial consumption of hulls over larvae consumption and growth. CONCLUSIONS: The results demonstrate that almond hulls are a suitable feedstock for larvae production under controlled management of moisture content and aeration. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Larva/crescimento & desenvolvimento , Prunus dulcis/parasitologia , Simuliidae/crescimento & desenvolvimento , Resíduos/análise , Ração Animal/análise , Animais , Larva/metabolismo , Nozes/química , Nozes/metabolismo , Nozes/parasitologia , Prunus dulcis/química , Prunus dulcis/metabolismo , Simuliidae/metabolismo
3.
Transl Anim Sci ; 8: txae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504948

RESUMO

Almond hulls and shells are a by-product of almond production that can be incorporated as a feed ingredient in beef cattle diets. Three experiments were conducted to determine the effects of hammermill screen size on almond hull and shell bulk density and inclusion of ground or non-ground almond hulls and shells in limit-fed growing diets on growth performance, diet digestibility, and ruminal fermentation characteristics of beef cattle. In experiment 1, almond hulls and shells were ground with a laboratory-scale hammermill using no screen, a 11.1-mm screen, a 19.1-mm screen, or a 25.4-mm screen. Each screen-size treatment was ground at three separate time points (n= 3 replications/treatment). Grinding almond hulls and shells with no screen increased bulk density by 111% and minimized proportions of fine particles; therefore, almond hulls and shells ground using no screen were included as a treatment in the following experiments. In experiment 2, 364 steers (initial body weight [BW]: 257±â€…20.7 kg) were blocked by truckload (n = 4), stratified by BW, and assigned to pen within block. Pens were randomly assigned to 1 of 4 experimental diets (n= 10 pens/treatment). The control diet (CON) contained (DM basis) 39.5% dry-rolled corn, 7.5% supplement, 40% wet-corn gluten feed, and 13% prairie hay. Non-ground (13AH) or ground (13GAH) almond hulls and shells replaced prairie hay and were fed at 13% of diet DM or non-ground almond hulls and shells were fed at 26% of diet DM and replaced 13% prairie hay and 13% dry-rolled corn (26AH). Diets were limit-fed at 2.2% of BW daily (DM basis) for 56 d. Overall average daily gains (ADG) were greater (P ≤ 0.05) for CON, 13AH, and 13GAH compared with 26AH. In addition, ADG from days 14 to 56 were greater (P= 0.03) for 13GAH and tended to be greater (P = 0.09) for 13AH compared with CON. Experiment 3 was a 4 × 4 replicated Latin square in which 8 ruminally cannulated heifers (initial BW = 378 ±â€…44.0 kg) were fed diets from experiment 2. Apparent dry matter digestibility did not differ (P = 0.21) among treatments. Total ruminal volatile fatty acid concentrations were greater (P ≤ 0.03) for 13GAH and 13AH compared with 26AH and tended (P = 0.06) to be greater for 13GAH compared with CON. Overall, almond hulls and shells can be utilized as an alternative to prairie hay in limit-fed growing diets without negatively influencing rates of gain or diet digestibility.

4.
Vet Sci ; 11(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921989

RESUMO

Almond hulls (AH) are frequently used in dairy ruminant feeding, but information on variability of their nutritive value and their potential effects on CH4 production is still scarce. The influence of almond variety (Guara vs. Soleta) on chemical composition and energy value of AH was investigated using 10 samples per variety collected in 2 consecutive years. Guara-AH had greater (p ≤ 0.015) ash, protein, and fat content, but lower (p ≤ 0.001) fiber than Soleta-AH. The metabolizable energy content estimated from chemical composition and in vitro gas production was 8.5% greater for Guara than for Soleta samples. Harvesting year significantly affected most of the chemical fractions. The in vitro ruminal fermentation of diets for dairy ruminants including increasing amounts of dried AH (8, 16 and 24% of the total diet; fresh matter basis) indicated that AH can be included up to 16% of the diet, partially substituting corn, wheat bran and sugar beet pulp without detrimental effects on in vitro volatile fatty acid (VFA) production. In contrast, when AH replaced alfalfa hay and corn, VFA production was reduced at all levels of AH inclusion. No antimethanogenic effects of AH were detected in the in vitro incubations.

5.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498547

RESUMO

Almond processing generates a high quantity of by-products, presenting the untapped potential for alternative applications and improved sustainability in production. This study aimed to evaluate whether the incorporation of almond by-products (hulls/shells) can improve the biochemical characteristics of green bean pods when used as an alternative to traditional growing media in green bean plants. Four substrates were prepared: the Control substrate (C): 70% peat + 30% perlite; substrate (AS): 70% peat + 30% shells; substrate (AH): 70% peat + 30% perlite + 1 cm hulls as mulch; substrate (MIX): 70% peat + 15% shells + 15% hulls. Plants were grown in each of these substrates and subjected to two irrigation levels, 100% and 50% of their water-holding capacity. Biochemical parameters (photosynthetic pigments, total phenolics, flavonoids, ortho-diphenols, soluble proteins, antioxidant capacity) and color were evaluated in the harvested pods. Results showed that pods from plants growing in AH substrate presented statistically significant higher values in their total phenolic content, while AS and MIX substrates did not reveal significant benefits. Summarily, this study highlights the potential of almond hulls as a promising medium for green bean cultivation, particularly when employed as mulch. Further research is recommended to gain a more comprehensive understanding of the application of almond by-products as natural fertilizers/mulch.

6.
Anim Biosci ; 36(5): 768-775, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36915937

RESUMO

OBJECTIVE: Oilseeds and nut co-products can be used as alternative feed ingredients in animal diets because they may have a lower cost than traditional ingredients. A study was, therefore, conducted to determine the chemical composition of copra, palm kernel, and nut coproducts from South-East Asia or Australia. The hypothesis that country of production influences nutritional composition was tested. METHODS: Oilseed meals included 2 copra expellers, 3 copra meals, and 12 palm kernel expellers. One source of almond hulls and cashew nut meal were also used. Samples were obtained from suppliers located in South-East Asia or Australia. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid-hydrolyzed ether extract (AEE), ash, minerals, insoluble dietary fiber, and soluble dietary fiber. Copra and nut coproducts were also analyzed for total starch and sugars. RESULTS: Copra expellers had greater (p<0.05) concentrations of dry matter and AEE compared with copra meal. However, copra meal had greater (p<0.05) concentrations of total dietary fiber (soluble and insoluble) and copper than copra expellers. Palm kernel expellers from Indonesia had greater (p<0.05) concentration of histidine and tyrosine compared with palm kernel expellers from Vietnam. Almond hulls was high in dietary fiber, but also contained free glucose and fructose, whereas cashew nut meal was high in AEE, but low in all free sugars. CONCLUSION: Copra expellers have greater concentration of AEE, but less concentration of total dietary fiber when compared with copra meal, and except for a few AA, no differences in nutrient composition of palm kernel expellers produced in Indonesia or Vietnam were detected. According to the chemical composition of nut co-products, cashew nut meal may be more suitable for non-ruminant diets than almond hulls.

7.
Sci Total Environ ; 825: 154044, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202688

RESUMO

The almond industry leaves behind substantial amounts of by-products, with almond hulls being the primary residue generated. Given that one way to improve food security is by decreasing waste to reduce environmental impacts, developing sustainable processes to manage this by-product is necessary. Herein, we report on the hydrothermal hydrogenation of almond hulls over a carbon-neutral Ru supported on carbon nanofibres (Ru/CNF) catalyst, addressing the temperature, H2 pressure, time and catalyst loading. These variables controlled the distribution of the reaction products: gas (0-5%), liquid (49-82%) and solid (13-51%), and ruled the composition of the liquid effluent. This aqueous fraction comprised oligomers (46-81 wt%), saccharides (2-7 wt%), sugar alcohols (2-15 wt%), polyhydric alcohols (1-8 wt%) and carboxylic acids (7-31 wt%). The temperature and reaction time influenced the extension of hydrolysis, depolymerisation, deamination, hydrolysis, hydrogenation and dehydration reactions. Additionally, the initial H2 pressure and catalyst loading kinetically promoted these transformations, whose extensions were ruled by the amount of H2 effectively dissolved in the reaction medium and the prevalence of hydrogenations over dehydration/decarboxylation reactions or vice versa depending on the catalyst loading. Process optimisation revealed that it is feasible to convert up to 67% of almond hulls into merchantable oligomers at 230 °C, 35 bar initial H2, using 1 g catalyst/g biomass (0.4 g Ru/g biomass) for 360 min. Additionally, decreasing the temperature to 187 °C without modifying the other parameters could convert this material into oligomers (31 wt%) and small oxygenates (17 wt% carboxylic acids, 11 wt% sugar alcohols and 6 wt% polyhydric alcohols) concurrently. The theoretical energy assessment revealed that the total and partial combustion of the spent solid material could provide the required energy for the process and allow catalyst recovery and reutilisation. This environmental friendliness and holistic features exemplify a landmark step-change to valorising unavoidable food waste.


Assuntos
Prunus dulcis , Eliminação de Resíduos , Carbono/química , Ácidos Carboxílicos , Catálise , Desidratação , Alimentos , Hidrogenação , Álcoois Açúcares/química
8.
Sci Total Environ ; 765: 142671, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33092830

RESUMO

For the first time, this work investigates the achievability of developing a biorefinery concept around almond hulls by hydrothermal treatment (HTT), thoroughly scrutinising the influence of the temperature (200-300 °C), pressure (100-180 bar), time (20-180 min) and solid loading (5-25 wt%). This process allowed the conversion of almond hulls into four main products: gas (2-13%), bio-oil (2-12%), aqueous (4-69%) and hydro-char (17-89%). The gas consisted of a mix of H2, CO2, CO and CH4 with a LHV fluctuating from 1 to 13 MJ/m3 STP. The bio-oil comprised a mixture of alkanes, aldehydes, ketones, phenols, furans, benzenes and nitrogen compounds with a HHV between 21 and 31 MJ/kg. The solid product resembled an energetic hydro-char material (HHV 21-31 MJ/kg), while the aqueous effluent comprised a mixture of value-added chemicals, including saccharides and small oxygenated compounds. The production of biofuels can be maximised at 256 °C and 100 bar, using a 5 wt% solid loading for 157 min, conditions at which 43% of the original feedstock can be converted into an elevated energy-filled bio-oil (11% yield, 30 MJ/kg), along with a high energetic hydro-char (32% yield, 29 MJ/kg). Regarding value-added chemicals, up to 10% of the almond hulls can be converted into a bio-oil with a high proportion (45%) of phenolic species at 250 °C and 144 bar with a solid loading of 5 wt% for 167 min. In comparison, a sugar-rich (81 C-wt%) solution can be produced in high yield (54%), by treating a 24 wt% suspension at 252 °C and 180 bar for 153 min. Therefore, the versatility, novelty and intrinsic green and holistic nature of this 'almond-refinery' concept exemplify a landmark achievement in future energy and chemicals production from biomass, which might help render the complete bio-refinery for almond hulls more cost-effectively and ecologically feasible.


Assuntos
Biocombustíveis , Prunus dulcis , Biomassa , Temperatura , Água
9.
Foods ; 10(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34441570

RESUMO

The search for waste minimization and the valorization of by-products are key practices for good management and improved sustainability in the food industry. The production of almonds generates a large amount of waste, most of which is not used. Until now, almonds have been used for their high nutritional value as food, especially almond meat. The other remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. However, interest in these by-products has been increasing as they possess beneficial properties (caused mainly by polyphenols and unsaturated fatty acids) and can be used as new ingredients for the food, cosmetic, and pharmaceutical industries. Therefore, it is important to explore almond's valorization of by-products for the development of new added-value products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.

10.
Foods ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34441599

RESUMO

The search for waste minimization and the valorization of by-products are key to good management and improved sustainability in the food industry. The great production of almonds, based on their high nutritional value as food, especially almond kernels, generates tons of waste yearly. The remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. The interest in these by-products has been increasing, as they possess beneficial properties, caused by the presence of different bioactive compounds, and can be used as promising sources of new ingredients for the food, cosmetic and pharmaceutical industry. Additionally, the use of almond by-products is being increasingly applied for the fortification of already-existing food products, but there are some limitations, including the presence of allergens and mycotoxins that harden their applicability. This review focuses on the extraction technologies applied to the valorization of almond by-products for the development of new value-added products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.

11.
Prev Nutr Food Sci ; 25(3): 254-262, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33083374

RESUMO

Hyperlipidemia and oxidative stress are risk factors for atherosclerosis. In this study, we investigated the hypolipidemic and anti-lipoprotein oxidation activities of polyphenol-rich extracts from almond hulls using Triton WR-1339 and high-fat diet-induced hyperlipemic mice as experimental models. We demonstrated that the almond hull extract significantly reduced total cholesterol, triglycerides and low-density lipoprotein-related plasma cholesterol (LDL-C) in the two experimental models of hyperlipidemia, but significantly increased high-density lipoprotein-related plasma cholesterol (HDL-C). Another beneficial effect of the extract was its ability to reduce the atherogenic index and LDL-C/HDL-C ratio. However, the extract exhibited effective antiradical activity against 2,2-diphenyl-1-picrylhydrazyl and significantly protected lipoprotein-rich plasma from mice against oxidation induced by copper ion. The extract contains 342.63±3.44 mg/g total phenolics, 144.67±6.83 mg/g tannins, and 20.66±0.92 mg/g flavonoids. These finding indicate that almond hulls contain polar products able to lower plasma lipid concentrations and which might be beneficial for the treatment of hyperlipidemia and prevention of atherosclerosis.

12.
Food Chem ; 322: 126742, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32305872

RESUMO

Almond hulls, the main by-product of almond production, are considered a valuable source of bioactive phenolic compounds. This study aimed to characterize the phenolic composition, bioavailability of the phenolic-rich extracts from almond hulls (PEAH), and their protective effect on oxidative stressed Caco-2 cells induced by tert-butylhydroperoxide (t-BOOH). The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) analysis detected 11 phenolic compounds in the PEAH with high total phenolic content and antioxidant activity. Oxidative Caco-2 cell damage was reduced by PEAH, especially at 5 µg/mL, through scavenging reactive oxygen species (ROS), modulating the cellular endogenous antioxidant system and cell redox at a predictable status. Also, in vitro digestion influenced the phenolic compounds' composition and antioxidant power of PEAH. These results suggested that almond hulls, rich in phenolic compounds, can meliorate the oxidative stressed Caco-2 cells and restore its impaired redox balance, and ultimately improve health benefits.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Extratos Vegetais/química , Substâncias Protetoras/farmacologia , Prunus dulcis/química , Antioxidantes/química , Disponibilidade Biológica , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Meia-Vida , Humanos , Análise dos Mínimos Quadrados , Espectrometria de Massas , Oxirredução , Fenóis/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacocinética , Prunus dulcis/metabolismo , Espécies Reativas de Oxigênio/química , terc-Butil Hidroperóxido/toxicidade
13.
Waste Manag ; 101: 74-82, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604160

RESUMO

Biosolarization utilizes organic amendments to produce biopesticide compounds in soil that can work in tandem with other stresses to inactivate agricultural pests. The prospect of using by-products from industrial almond processing as amendments for biosolarization was assessed. Soil mesocosms were used to simulate biosolarization using various almond by-products, application rates, and incubation times. Several potentially biopesticidal organic acids were identified and quantified in the soil, and the toxicity of soil extracts was evaluated for the root lesion nematode (Pratylenchus vulnus). It was determined that both almond hulls and a mixture of hulls and shells harbored several acids, the concentration of which was enhanced 1-7 fold via fermentation by native soil microbes. Organic acid concentration in the soil showed a significant linear relationship with the quantity of waste biomass amended. Extracts from soils containing at least 2.5% incorporated biomass by dry weight showed a 84-100% mortality of nematodes, which corresponded to acid concentrations 0.75 mg/g (2.0 g/L) or greater. This study showed that almond processing by-products - hulls and a hull and shell mixture - were suitable amendments for control of P. vulnus and potentially other soil agricultural pests in the context of biosolarization.


Assuntos
Agentes de Controle Biológico , Prunus dulcis , Agricultura , Biomassa , Solo
14.
J Agric Food Chem ; 63(9): 2490-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25693995

RESUMO

Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/isolamento & purificação , Etanol/metabolismo , Metano/metabolismo , Prunus dulcis/química , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Carboidratos/química , Distribuição Contracorrente , Etanol/análise , Fermentação , Metano/análise , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa