Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2301423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357414

RESUMO

Ammonia, as an essential and economical fuel, is a key intermediate for the production of innumerable nitrogen-based compounds. Such compounds have found vast applications in the agricultural world, biological world (amino acids, proteins, and DNA), and various other chemical transformations. However, unlike other compounds, the decomposition of ammonia is widely recognized as an important step towards a safe and sustainable environment. Ammonia has been popularly recommended as a viable candidate for chemical storage because of its high hydrogen content. Although ruthenium (Ru) is considered an excellent catalyst for ammonia oxidation; however, its high cost and low abundance demand the utilization of cheaper, robust, and earth abundant catalyst. The present review article underlines the various ammonia decomposition methods with emphasis on the use of non-noble metals, such as iron, nickel, cobalt, molybdenum, and several other carbides as well as nitride species. In this review, we have highlighted various advances in ammonia decomposition catalysts. The major challenges that persist in designing such catalysts and the future developments in the production of efficient materials for ammonia decomposition are also discussed.


In this dynamic area, ammonia degradation to hydrogen fuel provides a valuable contribution in the carbon neutral economy. Ammonia has been used extensively in several industries and is considered an ideal candidate for hydrogen generation and storage due to its high hydrogen content. Consequently, the ammonia decomposition to yield green hydrogen has become a hot topic in research. Although numerous studies on ammonia decomposition have been conducted over the last few decades, still very few review articles on the most recent advances in this field of catalysis have been published. Through this review, systematic information on the types of decomposition catalysts including both noble (Ru) and non-noble earth abundant metals such as iron, nickel, cobalt, molybdenum, their carbides and nitrides, catalytic routes, as well as the reactivity and mechanism can be comprehended. The literature on newly discovered catalysts, specifically from the last five years, is well documented and explained in this review article. Furthermore, the effect of catalyst supports, their reaction kinetics and mechanistic insights have also been discussed. The challenges and opportunities associated with the decomposition catalysts are comprehensively explicated in the end.


Ammonia decomposition reaction (ADR) is a viable method for hydrogen storage in the form of chemical bonds.Catalysts composed of noble, non-noble metals, amides, imides, carbides, nitrides, and their combinations have been widely explored towards the ADR.Challenges and opportunities in the ammonia oxidation are pointed out.

2.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446906

RESUMO

Ammonia decomposition has attracted significant attention in recent years due to its ability to produce hydrogen without emitting carbon dioxide and the ease of ammonia storage. This paper reviews the recent developments in ammonia decomposition technologies for hydrogen production, focusing on the latest advances in catalytic materials and catalyst design, as well as the research progress in the catalytic reaction mechanism. Additionally, the paper discusses the advantages and disadvantages of each method and the importance of finding non-precious metals to reduce costs and improve efficiency. Overall, this paper provides a valuable reference for further research on ammonia decomposition for hydrogen production.


Assuntos
Amônia , Metais , Catálise , Hidrogênio
3.
Molecules ; 28(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36985722

RESUMO

Ammonia decomposition is a promising method to produce high-purity hydrogen. However, this process typically requires precious metals (such as Ru, Pt, etc.) as catalysts to ensure high efficiency at relatively low temperatures. In this study, we propose using several Ni/GdxCe1-xO2-δ catalysts to improve ammonia decomposition performance by adjusting the support properties. We also investigate the underlying mechanism for this enhanced performance. Our results show that Ni/Ce0.8Gd0.2O2-δ at 600 °C can achieve nearly complete ammonia decomposition, resulting in a hydrogen production rate of 2008.9 mmol.g-1.h-1 with minimal decrease over 150 h. Density functional theory calculations reveal that the recombinative desorption of nitrogen is the rate-limiting step of ammonia decomposition over Ni. Our characterizations indicate that Ni/Ce0.8Gd0.2O2-δ exhibits a high concentration of oxygen vacancies, highly dispersed Ni on the surface, and abundant strong basic sites. These properties significantly enhance the associative desorption of N and strengthen the metal support interactions, resulting in high catalytic activity and stability. We anticipate that the mechanism could be applied to designing additional catalysts with high ammonia decomposition performance at relatively low temperatures.

4.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35172285

RESUMO

Hydrogen is ideal for producing carbon-free and clean-green energy with which to save the world from climate change. Proton exchange membrane fuel cells use to hydrogen to produce 100% clean energy, with water the only by-product. Apart from generating electricity, hydrogen plays a crucial role in hydrogen-powered vehicles. Unfortunately, the practical uses of hydrogen energy face many technical and safety barriers. Research into hydrogen generation and storage and reversibility transportation are still in its very early stages. Ammonia (NH3) has several attractive attributes, with a high gravimetric hydrogen density of 17.8 wt% and theoretical hydrogen conversion efficiency of 89.3%. Ammonia storage and transport are well-established technologies, making the decomposition of ammonia to hydrogen the safest and most carbon-free option for using hydrogen in various real-time applications. However, several key challenges must be addressed to ensure its feasibility. Current ammonia decomposition technologies require high temperatures, pressures and non-recyclable catalysts, and a sustainable decomposition mechanism is urgently needed. This review article comprehensively summarises current knowledge about and challenges facing solid-state storage of ammonia and decomposition. It provides potential strategic solutions for developing a scalable process with which to produce clean hydrogen by eliminating possible economic and technical barriers.

5.
Chemistry ; 23(41): 9766-9771, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28627715

RESUMO

A new complex ternary amide, Rb2 [Mn(NH2 )4 ], which simultaneously contains both transition and alkali metal catalytic sites, is developed. This is in line with the recently reported TM-LiH composite catalysts, which have been shown to effectively break the scaling relations and achieve ammonia synthesis under mild conditions. Rb2 [Mn(NH2 )4 ] can be facilely synthesized by mechanochemical reaction at room temperature. It exhibits two temperature-dependent polymorphs, that is, a low-temperature orthorhombic and a high-temperature monoclinic structure. Rb2 [Mn(NH2 )4 ] decomposes to N2 , H2 , NH3 , Mn3 N2 , and RbNH2 under inert atmosphere; whereas it releases NH3 at a temperature as low as 80 °C under H2 atmosphere. Those unique behaviors enable Rb2 [Mn(NH2 )4 ], and its analogue K2 [Mn(NH2 )4 ], to be excellent catalytic materials for ammonia decomposition and synthesis. Experimental results show both ammonia decomposition onset temperatures and conversion rates over Rb2 [Mn(NH2 )4 ] and K2 [Mn(NH2 )4 ] are similar to those of noble metal Ru-based catalysts. More importantly, these ternary amides exhibit superior capabilities in catalyzing NH3 synthesis, which are more than 3 orders of magnitude higher than that of Mn nitride and twice of that of Ru/MgO. The in situ SR-PXD measurement shows that manganese nitride, synergistic with Rb/KH or Rb/K(NH2 )x H1-x , are likely the active sites. The chemistry of Rb2 /K2 [Mn(NH2 )x ] and Rb/K(NH2 )x H1-x with H2 /N2 and NH3 correlates closely with the catalytic performance.

6.
Angew Chem Int Ed Engl ; 54(10): 2950-4, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25604896

RESUMO

Alkali metals have been widely employed as catalyst promoters; however, the promoting mechanism remains essentially unclear. Li, when in the imide form, is shown to synergize with 3d transition metals or their nitrides TM(N) spreading from Ti to Cu, leading to universal and unprecedentedly high catalytic activities in NH3 decomposition, among which Li2NH-MnN has an activity superior to that of the highly active Ru/carbon nanotube catalyst. The catalysis is fulfilled via the two-step cycle comprising: 1) the reaction of Li2NH and 3d TM(N) to form ternary nitride of LiTMN and H2, and 2) the ammoniation of LiTMN to Li2NH, TM(N) and N2 resulting in the neat reaction of 2 NH3⇌N2+3 H2. Li2NH, as an NH3 transmitting agent, favors the formation of higher N-content intermediate (LiTMN), where Li executes inductive effect to stabilize the TM-N bonding and thus alters the reaction energetics.

7.
ChemSusChem ; : e202400221, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656613

RESUMO

Alkali and alkaline earth metal amides are a type of functional materials for hydrogen storage, thermal energy storage, ion conduction, and chemical transformations such as ammonia synthesis and decomposition. The thermal chemistry of lithium amide (LiNH2), as a simple but representative alkali or alkaline earth metal amide, has been well studied previously encouraged by its potentials in hydrogen storage. In comparison, little is known about the interaction of plasma and LiNH2. Herein, we report that the plasma treatment of LiNH2 in an Ar flow under ambient temperature and pressure gives rise to distinctly different reaction products and reaction pathway from that of the thermal process. We found that plasma treatment of LiNH2 leads to the formation of Li colloids, N2, and H2 as observed by UV-vis absorption, EPR, and gas products analysis. Inspired by this very unique interaction between plasma and LiNH2, a chemical loop for ammonia decomposition to N2 and H2 mediated by LiNH2 was proposed and demonstrated.

8.
ChemSusChem ; 16(24): e202202370, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37667438

RESUMO

The efficient decomposition of ammonia to produce COx -free hydrogen at low temperatures has been extensively investigated as a potential method for supplying hydrogen to mobile devices based on fuel cells. In this study, we employed dielectric barrier discharge (DBD) plasma, a non-thermal plasma, to enhance the catalytic ammonia decomposition over supported Ru catalysts (Ru/Y2 O3 , Ru/La2 O3 , Ru/CeO2 and Ru/SiO2 ). The plasma-catalytic reactivity of Ru/La2 O3 was found to be superior to that of the other three catalysts. It was observed that both the physicochemical properties of the catalyst (such as support acidity) and the plasma discharge behaviours exerted significant influence on plasma-catalytic reactivity. Combining plasma with a Ru catalyst significantly enhanced ammonia conversion at low temperatures, achieving near complete NH3 conversion over the 1.5 %-Ru/La2 O3 catalyst at temperatures as low as 380 °C. Under a weight gas hourly space velocity of 2400 mL gcat -1 h-1 and an AC supply power of 20 W, the H2 formation rate and energy efficiency achieved were 10.7 mol gRu -1 h-1 and 535 mol gRu -1 (kWh)-1 , respectively, using a 1.5 %-Ru/La2 O3 catalyst.

9.
Nanomaterials (Basel) ; 13(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049373

RESUMO

Ammonia has the advantages of being easy to liquefy, easy to store, and having a high hydrogen content of 17.3 wt%, which can be produced without COx through an ammonia decomposition using an appropriate catalyst. In this paper, a series of FeCr bimetallic oxide nanocatalysts with a uniform morphology and regulated composition were synthesized by the urea two-step hydrolysis method, which exhibited the high-performance decomposition of ammonia. The effects of different FeCr metal ratios on the catalyst particle size, morphology, and crystal phase were investigated. The Fe0.75Cr0.25 sample exhibited the highest catalytic activity, with an ammonia conversion of nearly 100% at 650 °C. The dual metal catalysts clearly outperformed the single metal samples in terms of their catalytic performance. Besides XRD, XPS, and SEM being used as the means of the conventional characterization, the local structural changes of the FeCr metal oxide catalysts in the catalytic ammonia decomposition were investigated by XAFS. It was determined that the Fe metal and FeNx of the bcc structure were the active species of the ammonia-decomposing catalyst. The addition of Cr successfully prevented the Fe from sintering at high temperatures, which is more favorable for the formation of stable metal nitrides, promoting the continuous decomposition of ammonia and improving the decomposition activity of the ammonia. This work reveals the internal relationship between the phase and structural changes and their catalytic activity, identifies the active catalytic phase, thus guiding the design and synthesis of catalysts for ammonia decomposition, and excavates the application value of transition-metal-based nanocomposites in industrial catalysis.

10.
Membranes (Basel) ; 12(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36295731

RESUMO

Ammonia is an excellent medium for solar thermal chemical energy storage and can also use excess heat to produce hydrogen without carbon emission. To deepen the study of ammonia decomposition in these two fields, finite-time thermodynamics is used to model a solar-heating, co-current sweeping ammonia decomposition membrane reactor. According to the needs of energy storage systems and solar hydrogen production, five performance indicators are put forward, including the heat absorption rate (HAR), ammonia conversion rate (ACR), hydrogen production rate (HPR), entropy generation rate (EGR) and energy conversion rate (ECR). The effects of the light intensity, ammonia flow rate, nitrogen flow rate and palladium membrane radius on system performances are further analyzed. The results show that the influences of the palladium membrane radius and nitrogen flow rate on reactor performances are very slight. When the light intensity is increased from 500 W/m2 to 800 W/m2, the ACR, EGR, HAR and HPR increase obviously, but the ECR decreases by 14.2%. When the ammonia flow rate is increased by 100%, the ECR, EGR and HPR increase by more than 70%, the HAR increases by 15.6% and the ACR decreases by 12.9%. At the same time, the ammonia flow rate needs to be adjusted with the light intensity. The results can provide some guiding significance for the engineering application of ammonia solar energy storage systems and solar hydrogen production.

11.
Membranes (Basel) ; 12(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736334

RESUMO

In this paper, an ammonia decomposition membrane reactor is applied to a solar heat absorption system, and thermodynamic optimization is carried out according to the usage scenarios. First, a model of an ammonia decomposition solar heat absorption system based on the membrane reactor is established by using finite time thermodynamics (FTT) theory. Then, the three-objective optimization with and the four-objective optimization without the constraint of the given heat absorption rate are carried out by using the NSGA-II algorithm. Finally, the optimized performance objectives and the corresponding design parameters are obtained by using the TOPSIS decision method. Compared with the reference system, the TOPSIS optimal solution for the three-objective optimization can reduce the entropy generation rate by 4.8% and increase the thermal efficiency and energy conversion rate by 1.5% and 1.4%, respectively. The optimal solution for the four-objective optimization can reduce the heat absorption rate, entropy generation rate, and energy conversion rate by 15.5%, 14%, and 8.7%, respectively, and improve the thermal efficiency by 15.7%. The results of this paper are useful for the theoretical study and engineering application of ammonia solar heat absorption systems based on membrane reactors.

12.
ACS Appl Mater Interfaces ; 13(1): 597-607, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347286

RESUMO

We report the fabrication and catalytic performance evaluation of highly active and stable nickel (Ni)-based structured catalysts for ammonia dehydrogenation with nearly complete conversion using nonprecious metal catalysts. Low-temperature chemical alloying (LTCA) followed by selective aluminum (Al) dealloying was utilized to synthesize foam-type structured catalysts ready for implementation in commercial-scale catalytic reactors. The crystalline phases of Ni-Al alloy (NiAl3, Ni2Al3, or both) in the near-surface layer were controlled by tuning the alloying time. The best-performing catalyst was obtained from a Ni foam substrate with a NiAl3/Ni2Al3 overlayer synthesized by LTCA at 400 °C for 20 h. The developed Ni catalyst exhibited an activity enhancement of 10-fold over the nontreated Ni foam and showed outstanding activities of 15 800 molH2molNi-1h-1 (TOF: 4.39 s-1) and 19 978 molH2molNi-1h-1 (TOF: 5.55 s-1) at 550 and 600 °C, respectively. This performance is unprecedented compared with previously reported Ni-based ammonia cracking catalysts with higher-end performance (TOFs of 0.08-1.45 s-1 at 550 °C). Moreover, this catalyst showed excellent stability for 100 h at 600 °C while discharging an extremely low NH3 concentration of 1034 ppm. The NH3 concentration in the exhaust gas was further reduced to 690 and 271 ppm at 700 and 800 °C, respectively, while no deactivation was observed at these elevated temperatures. Through material characterizations, we clarified that controlling the degree of Al alloying in the outermost layer of Ni is a crucial factor in determining the activity and stability because residual Al possibly modifies the electronic structure of Ni for enhanced activity as well as transforming to acidic alumina for increased intrinsic activity and stability.

13.
Materials (Basel) ; 13(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316302

RESUMO

High throughput experimentation has the capability to generate massive, multidimensional datasets, allowing for the discovery of novel catalytic materials. Here, we show the synthesis and catalytic screening of over 100 unique Ru-Metal-K based bimetallic catalysts for low temperature ammonia decomposition, with a Ru loading between 1-3 wt% Ru and a fixed K loading of 12 wt% K, supported on γ-Al2O3. Bimetallic catalysts containing Sc, Sr, Hf, Y, Mg, Zr, Ta, or Ca in addition to Ru were found to have excellent ammonia decomposition activity when compared to state-of-the-art catalysts in literature. Furthermore, the Ru content could be reduced to 1 wt% Ru, a factor of four decrease, with the addition of Sr, Y, Zr, or Hf, where these secondary metals have not been previously explored for ammonia decomposition. The bimetallic interactions between Ru and the secondary metal, specifically RuSrK and RuFeK, were investigated in detail to elucidate the reaction kinetics and surface properties of both high and low performing catalysts. The RuSrK catalyst had a turnover frequency of 1.78 s-1, while RuFeK had a turnover frequency of only 0.28 s-1 under identical operating conditions. Based on their apparent activation energies and number of surface sites, the RuSrK had a factor of two lower activation energy than the RuFeK, while also possessing an equivalent number of surface sites, which suggests that the Sr promotes ammonia decomposition in the presence of Ru by modifying the active sites of Ru.

14.
ACS Nano ; 13(9): 9944-9957, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31393708

RESUMO

Ammonia is a promising hydrogen storage medium; however, its decomposition via conventional thermal catalysis requires a significant amount of thermal energy input in order to overcome the reaction barriers. Here, we use embedded correlated wavefunction (ECW) theory to quantify reaction pathways and energetics for ammonia decomposition (N-H bond dissociation and N2 and H2 associative desorption) on copper (Cu) nanoparticles using a Cu (111) surface model. We predict that surface plasmon excitations will be able to facilitate ammonia decomposition by substantially reducing the effective barriers along excited-state pathways. We estimate the reductions in reaction barriers for breaking the first N-H bond and for recombinative desorption of surface-bound nitrogen and hydrogen atoms to be approximately 1.7, 0.8, and 0.5 eV, respectively. Further, by using the experimental N2 desorption barrier as a reference, we compare the accuracy of various theoretical methods, including plane-wave Kohn-Sham density functional theory calculations with commonly used exchange-correlation functionals, embedded complete active space second-order perturbation theory, and embedded multiconfiguration pair-density functional theory. This work offers further confirmation that the ECW theoretical framework is the most robust for treating highly correlated local electronic structures of solids.

15.
ACS Appl Mater Interfaces ; 10(24): 20521-20529, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29856913

RESUMO

Graphitic carbon nitride (g-C3N4) with layered structure represents one of the most promising metal-free photocatalysts. As yet, the direct one-step synthesis of ultrathin g-C3N4 nanosheets remains a challenge. Here, few-layered holey g-C3N4 nanosheets (CNS) were fabricated by simply introducing a piece of nickel foam over the precursors during the heating process. The as-prepared CNS with unique structural advantages exhibited superior photocatalytic water splitting activity (1871.09 µmol h-1 g-1) than bulk g-C3N4 (BCN) under visible light (λ > 420 nm) (≈31 fold). Its outstanding photocatalytic performance originated from the high specific surface area (240.34 m2 g-1) and mesoporous structure, which endows CNS with more active sites, efficient exciton dissociation, and prolonged charge carrier lifetime. Moreover, the obvious upshift of the conduction band leads to a larger thermodynamic driving force for photocatalytic proton reduction. This methodology not only had the advantages for the direct and green synthesis of g-C3N4 nanosheets but also paved a new avenue to modify molecular structure and textural of g-C3N4 for advanced applications.

16.
Chempluschem ; 82(3): 368-375, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962031

RESUMO

High-surface-area Co-SiO2 nanocomposites were synthesized by a simple two-step procedure with activated carbon as the template. These materials catalyze the decomposition of ammonia to produce COx -free hydrogen. The fresh and used catalysts were characterized by various techniques including X-ray diffraction, N2 adsorption-desorption, and transmission electron microscopy. Furthermore, temperature-programmed reduction by hydrogen combined with the corresponding in situ XRD analysis was performed to investigate the redox properties of the as-prepared catalysts. The strong interaction between the cobalt species and silica can effectively prevent the active cobalt nanoparticles from agglomerating during calcination and the ammonia decomposition reaction. The ammonia reaction rate reached about 7000 mol NH3 molCo -1  h-1 with a very high GHSV of 124 000 cm3 gcat -1  h-1 at 600 °C; this rate was maintained for 48 h without any observable deactivation of the as-obtained Co-SiO2 nanocomposite catalyst.

17.
Top Catal ; 60(15): 1251-1259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009773

RESUMO

The use of ammonia as a hydrogen vector has the potential to unlock the hydrogen economy. In this context, this paper presents novel insights into improving the ammonia decomposition activity of ruthenium nanoparticles supported on carbon nanotubes (CNT) by nitrogen doping. Our results can be applied to develop more active systems capable of delivering hydrogen on demand, with a view to move towards the low temperature target of less than 150 °C. Herein we demonstrate that nitrogen doping of the CNT support enhances the activity of ruthenium nanoparticles for the low temperature ammonia decomposition with turnover frequency numbers at 400 °C of 6200 LH2 molRu -1 h-1, higher than the corresponding value of unmodified CNT supports under the same conditions (4400 LH2 molRu -1 h- 1), despite presenting similar ruthenium particle sizes. However, when the nitrogen doping process is carried out with cetyltrimethylammonium bromide (CTAB) to enhance the dispersion of CNTs, the catalyst becomes virtually inactive despite the small ruthenium particle size, likely due to interference of CTAB, weakening the metal-support interaction. Our results demonstrate that the low temperature ammonia decomposition activity of ruthenium can be enhanced by nitrogen doping of the CNT support due to simultaneously increasing the support's conductivity and basicity, electronically modifying the ruthenium active sites and promoting a strong metal-support interaction.

18.
ACS Appl Mater Interfaces ; 7(13): 7406-12, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25804559

RESUMO

In this study, Ni/BaCe0.75Y0.25O3-δ (Ni/BCY25) was investigated as an anode for direct ammonia-fueled solid oxide fuel cells. The catalytic activity of Ni/BCY25 for ammonia decomposition was found to be remarkably higher than Ni/8 mol % Y2O3-ZrO2 and Ni/Ce0.90Gd0.10O1.95. The poisoning effect of water and hydrogen on ammonia decomposition reaction over Ni/BCY25 was evaluated. In addition, an electrolyte-supported SOFC employing BaCe0.90Y0.10O3-δ (BCY10) electrolyte and Ni/BCY25 anode was fabricated, and its electrochemical performance was investigated at 550-650 °C with supply of ammonia and hydrogen fuel gases. The effect of water content in anode gas on the cell performance was also studied. Based on these results, it was concluded that Ni/BCY25 was a promising anode for direct ammonia-fueled SOFCs. An anode-supported single cell denoted as Ni/BCY25|BCY10|Sm0.5Sr0.5CoO3-δ was also fabricated, and maximum powder density of 216 and 165 mW cm(-2) was achieved at 650 and 600 °C, for ammonia fuel, respectively.

19.
Materials (Basel) ; 6(6): 2400-2409, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809280

RESUMO

An effect of promoters such as calcium, aluminium, and potassium oxides and also addition of chromium and manganese on the structure of cobalt catalysts was examined. Studies of the catalytic ammonia decomposition over the cobalt catalysts are presented. The studies of the ammonia decomposition were carried out for various ammonia-hydrogen mixtures in which ammonia concentration varied in the range from 10% to 100%. Co(0) catalyst, promoted by oxides of aluminium, calcium, and potassium, showed the highest activity in the ammonia decomposition reaction. Contrary to expectations, it was found that chromium and manganese addition into the catalysts decreased their activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa