Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334478

RESUMO

YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of Escherichia coli to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Membrana Transportadoras , Peptídeos , Ligantes , Peptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Oligopeptídeos , Escherichia coli/metabolismo , Ligação Proteica
2.
Appl Microbiol Biotechnol ; 107(1): 163-174, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36445388

RESUMO

PK34 is a D29 mycobacteriophage-derived anti-microbial peptide (AMP) with anti-Mycobacterium tuberculosis activity. It is expected to become an auxiliary drug for the treatment of M. tuberculosis infection, or as a template for the development of anti-M. tuberculosis drugs. The focus of this paper is to obtain recombinant PK34 by a novel method of prokaryotic expression and purification by affinity chromatography. The minimum inhibitory concentration (MIC) of recombinant PK34 was better than that of synthetic PK34 as measured by the microplate-based Alamar Blue assay (MABA). In order to further compare the different anti-bacterial effects of PK34 obtained by the two methods on M. tuberculosis, the bacterial changes after drug incubation were observed at the microscopic level by transmission electron microscopy (TEM). In order to apply PK34 to clinical treatment earlier in the future, this paper tested the maximum non-toxic concentration of recombinant PK34 to the two most studied immune cells, RAW264.7 and THP-1, through cytotoxicity experiments. The maximum non-toxic concentration was the same as the MIC of recombinant PK34 to M. tuberculosis H37Rv, and both were 12.5 µg/mL. The monoclonal antibodies against PK34 and their hybridoma cell lines were prepared using recombinant PK34 as the antigen. Next, we obtained the gene sequence of the monoclonal antibody, which was prepared for the basic research of PK34 in M. tuberculosis treatment. In addition, the possible molecular docking mode between PK34 and trehalose-6,6-dimycolate (TDM) was predicted by AI simulation. To sum up, this paper provides a new idea for the birth of more new AMPs of the same type as PK34 in the future. KEY POINTS: • Design and prepare a novel recombinant PK34 anti-microbial peptide. • Recombinant PK34 has higher purity and anti-bacterial activity than synthetic PK34. • The monoclonal antibody against recombinant PK34 was prepared and sequenced.


Assuntos
Bacteriófagos , Mycobacterium tuberculosis , Tuberculose , Humanos , Bacteriófagos/genética , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Tuberculose/tratamento farmacológico , Peptídeos/farmacologia , Anticorpos Monoclonais/uso terapêutico
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958808

RESUMO

Understanding the complex interactions between metabolism and the immune system ("metaflammation") is crucial for the identification of key immunomodulatory factors as potential therapeutic targets in obesity and in cardiovascular diseases. Cathelicidin antimicrobial peptide (CAMP) is an important factor of innate immunity and is expressed in adipocytes. CAMP, therefore, might play a role as an adipokine in metaflammation and adipose inflammation. TNFα, cell-free nucleic acids (cfDNA), and toll-like receptor (TLR) 9 are components of the innate immune system and are functionally active in adipose tissue. The aim of the present study was to investigate the impact of TNFα and cfDNA on CAMP expression in adipocytes. Since cfDNA acts as a physiological TLR9 agonist, we additionally investigated TLR9-mediated CAMP regulation in adipocytes and adipose tissue. CAMP gene expression in murine 3T3-L1 and human SGBS adipocytes and in murine and human adipose tissues was quantified by real-time PCR. Adipocyte inflammation was induced in vitro by TNFα and cfDNA stimulation. Serum CAMP concentrations in TLR9 knockout (KO) and in wildtype mice were quantified by ELISA. In primary adipocytes of wildtype and TLR9 KO mice, CAMP gene expression was quantified by real-time PCR. CAMP gene expression was considerably increased in 3T3-L1 and SGBS adipocytes during differentiation. TNFα significantly induced CAMP gene expression in mature adipocytes, which was effectively antagonized by inhibition of PI3K signaling. Cell-free nucleic acids (cfDNA) significantly impaired CAMP gene expression, whereas synthetic agonistic and antagonistic TLR9 ligands had no effect. CAMP and TLR9 gene expression were correlated positively in murine and human subcutaneous but not in intra-abdominal/visceral adipose tissues. Male TLR9 knockout mice exhibited lower systemic CAMP concentrations than wildtype mice. CAMP gene expression levels in primary adipocytes did not significantly differ between wildtype and TLR9 KO mice. These findings suggest a regulatory role of inflammatory mediators, such as TNFα and cfDNA, in adipocytic CAMP expression as a novel putative molecular mechanism in adipose tissue innate immunity.


Assuntos
Ácidos Nucleicos Livres , Receptor Toll-Like 9 , Masculino , Camundongos , Humanos , Animais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Catelicidinas/genética , Catelicidinas/farmacologia , Catelicidinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Expressão Gênica , Ácidos Nucleicos Livres/metabolismo , Regulação da Expressão Gênica , Células 3T3-L1
4.
Clin Exp Immunol ; 204(3): 296-309, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460469

RESUMO

The skin is a unique immune organ that constitutes a complex network of physical, chemical and microbiological barriers against external insults. Keratinocytes are the most abundant cell type in the epidermis. These cells form the physical skin barrier and represent the first line of the host defense system by sensing pathogens via innate immune receptors, initiating anti-microbial responses and producing various cytokines, chemokines and anti-microbial peptides, which are important events in immunity. A damaged epidermal barrier in atopic dermatitis allows the penetration of potential allergens and pathogens to activate keratinocytes. Among the dysregulation of immune responses in atopic dermatitis, activated keratinocytes play a role in several biological processes that contribute to the pathogenesis of atopic dermatitis. In this review, we summarize the current understanding of the innate immune functions of keratinocytes in the pathogenesis of atopic dermatitis, with a special emphasis on skin-derived anti-microbial peptides and atopic dermatitis-related cytokines and chemokines in keratinocytes. An improved understanding of the innate immunity mediated by keratinocytes can provide helpful insight into the pathophysiological processes of atopic dermatitis and support new therapeutic efforts.


Assuntos
Dermatite Atópica/imunologia , Imunidade Inata/imunologia , Queratinócitos/imunologia , Alérgenos/imunologia , Quimiocinas/imunologia , Citocinas/imunologia , Epiderme/imunologia , Humanos , Pele/imunologia
5.
Crit Rev Microbiol ; 47(2): 240-253, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33555958

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. Its pathology is primarily characterized by extracellular deposits of amyloid ß peptide and intracellular neurofibrillary tangles. Current rationales to explain the pathogenesis of AD include amyloid cascade, inflammation, infection defense and anti-microbial protection hypotheses. This review focuses on recent advances in the infection hypothesis, in particular on those pathogenic microbes that act systemically, via periodontal and gastro-intestinal infection routes. It is proposed that the evidence convincingly supports that pathogenic microbial infection is associated with, and is likely a causative trigger for, AD pathology. Microbes can drive AD pathology by two main pathways: either by directly infecting the brain and stimulating amyloid-mediated defence (causative trigger) or indirectly, by stimulating the pro-inflammatory effects of infection. In this context, it follows that anti-microbial/anti-infection therapies could be effective for regulating the pathology and symptoms of AD, depending on the stage of disease. As long-term administration of traditional antibiotic therapy is not recommended, alternative antibiotic agents such as anti-microbial peptides (AMPs), could be preferred for intervention and disease management of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Infecções Bacterianas/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/administração & dosagem , Doença de Alzheimer/imunologia , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Fenômenos Fisiológicos Bacterianos , Humanos
6.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360629

RESUMO

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


Assuntos
Histatinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7
7.
World J Microbiol Biotechnol ; 36(11): 174, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33083940

RESUMO

Over the past years, short anti-microbial peptides have drawn growing attention in the research and trade literature because they are usually capable of killing a broad spectrum of pathogens by employing unique mechanisms of action. This study aimed to evaluate the anti-bacterial effects of a previously designed peptide named PVP towards the clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Secondary structure, cytotoxicity, and membrane-permeabilizing effects of the peptide were also assessed. PVP had a tendency to adopt alpha-helical conformation based upon structural predictions and circular dichroism spectroscopy (in 50% trifluoroethanol). The peptide showed MIC values ranging from 1 to 16 µg/mL against 10 strains of MRSA. In contrast to ciprofloxacin and gentamicin, PVP at sub-lethal concentration (1 µg/mL) did not provoke the development of peptide resistance after 14 serial passages. Remarkably, 1 h of exposure to 4 × MBC of PVP (8 µg/mL) was sufficient for total bacterial clearance, whereas 4 × MBC of vancomycin (8 µg/mL) failed to totally eradicate bacterial cells, even after 8 h. PVP showed negligible cytotoxicity against human dermal fibroblasts at concentrations required to kill the MRSA strains. The results of flow cytometric analysis and fluorescence microscopy revealed that PVP caused bacterial membrane permeabilization, eventually culminating in cell death. Owing to the potent anti-bacterial activity, fast bactericidal kinetics, and negligible cytotoxicity, PVP has the potential to be used as a candidate antibiotic for the topical treatment of MRSA infections.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Antibacterianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Ciprofloxacina/farmacologia , Dicroísmo Circular , Gentamicinas/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Peptídeos/química , Estrutura Secundária de Proteína
8.
Fish Shellfish Immunol ; 84: 906-911, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385246

RESUMO

Bursicon is a neurohormone belonging to the cystine knot protein family. It consists of two subunits (burs α and burs ß) and plays a pivotal role in cuticle tanning and wing expansion in insects. Recent studies show that homologous crustacean bursicon stimulates cuticle thickening and granulation of hemocytes in the crab Callinectes sapidus. Here we investigate whether bursicon homodimers function in immunoprotective defense systems of shrimp. We found that abdominal ganglion was the main neurohemal release site of bursicon in Neocaridina heteropoda. Bacterial infections induced overexpression of burs α (bursicon α) and burs ß (bursicon ß). RNAi of burs α, burs ß or both inhibited the expression of anti-microbial peptide (AMP) genes. Treating shrimp adults with r-bursicon (recombinant bursicon) homodimers led to up-regulation of three AMP genes. Besides, through the induced AMPs, r-bursicon homodimers enhanced the bacteriostasis of shrimp in vivo and in vitro. These findings demonstrate a novel function of bursicon in crustacean that it induces innate immune via up-regulating the expression of genes encoding AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Decápodes/genética , Decápodes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Hormônios de Invertebrado/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Dimerização , Perfilação da Expressão Gênica , Hormônios de Invertebrado/metabolismo
9.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252518

RESUMO

Aedes aegypti (L.) is the primary vector of emergent mosquito-borne viruses, including chikungunya, dengue, yellow fever, and Zika viruses. To understand how these viruses interact with their mosquito vectors, an analysis of the innate immune system response was conducted. The innate immune system is a conserved evolutionary defense strategy and is the dominant immune system response found in invertebrates and vertebrates, as well as plants. RNA-sequencing analysis was performed to compare target transcriptomes of two Florida Ae. aegypti strains in response to chikungunya virus infection. We analyzed a strain collected from a field population in Key West, Florida, and a laboratory strain originating from Orlando. A total of 1835 transcripts were significantly expressed at different levels between the two Florida strains of Ae. aegypti. Gene Ontology analysis placed these genes into 12 categories of biological processes, including 856 transcripts (up/down regulated) with more than 1.8-fold (p-adj (p-adjust value) ≤ 0.01). Transcriptomic analysis and q-PCR data indicated that the members of the AaeCECH genes are important for chikungunya infection response in Ae. aegypti. These immune-related enzymes that the chikungunya virus infection induces may inform molecular-based strategies for interruption of arbovirus transmission by mosquitoes.


Assuntos
Aedes/imunologia , Imunidade Inata , Transcriptoma , Aedes/genética , Aedes/virologia , Animais , Vírus Chikungunya/patogenicidade , Defensinas/genética , Defensinas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
Clin Exp Immunol ; 190(2): 155-166, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28708318

RESUMO

Anti-microbial peptides or host defence peptides are small molecules that display both anti-microbial activities and complex immunomodulatory functions to protect against various diseases. Among these peptides, the human ß-defensins (hBDs) are localized primarily in epithelial surfaces, including those of the skin, where they contribute to protective barriers. In atopic dermatitis skin lesions, altered skin barrier and immune dysregulation are believed to be responsible for reduced hBD synthesis. Impaired hBD expression in the skin is reportedly the leading cause of increased susceptibility to bacterial and viral infection in patients with atopic dermatitis. Although hBDs have considerable beneficial effects as anti-microbial agents and immunomodulators and may ameliorate atopic dermatitis clinically, recent evidence has also suggested the negative effects of hBDs in atopic dermatitis development. In the current review, we provide an overview of the regulation of hBDs and their role in the pathogenesis of atopic dermatitis. The efforts to utilize these molecules in clinical applications are also described.


Assuntos
Dermatite Atópica/imunologia , beta-Defensinas/metabolismo , Animais , Dermatite Atópica/fisiopatologia , Dermatite Atópica/terapia , Humanos , Camundongos , beta-Defensinas/biossíntese , beta-Defensinas/genética , beta-Defensinas/imunologia
11.
Biochem J ; 473(1): 87-98, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26508735

RESUMO

The human host-defence peptide (HDP) LL-37 not only displays anti-microbial activity but also immune-modulating properties that trigger intracellular signalling events in host cells. Since the cytolytic activity of high LL-37 concentrations affects cell viability, the function of LL-37 requires tight regulation. Eukaryotic cells therefore benefit from protective measures to prevent harmful effects of LL-37. p33, also known as globular C1q receptor (gC1qR), is reported to act as an LL-37 antagonist by binding the peptide, thereby reducing its cytotoxic activity. In the present report, we show that high levels of endogenous p33 correlate with an increased viability in human cells treated with LL-37. Sub-cellular localization analysis showed p33 distribution at the mitochondria, the plasma membrane and in the cytosol. Strikingly, cytosolic overexpression of p33 significantly antagonized detrimental effects of LL-37 on cell fitness, whereas the reverse effect was observed by siRNA-induced down-regulation of p33. However, modulation of p33 expression had no effect on LL-37-induced plasma membrane pore forming capacity pointing to an intracellular mechanism. A scavenging function of intracellular p33 is further supported by co-immunoprecipitation experiments, showing a direct interaction between intracellular p33 and LL-37. Thus, our findings support an important role of intracellular p33 in maintaining cell viability by counteracting LL-37-induced cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citotoxinas/toxicidade , Glicoproteínas de Membrana/biossíntese , Receptores de Complemento/biossíntese , Adolescente , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Células HeLa , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Receptores de Complemento/genética , Catelicidinas
12.
Int Immunol ; 26(11): 637-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24990383

RESUMO

Cathelicidins represent a family of cationic peptides involved in host defense systems. Apart from exerting direct anti-microbial effects, cathelicidins can regulate immune responses by affecting the activity of cells playing a role in antibacterial defense. Taking into account that mast cells are critical components of host defense, the aim of this study was to determine whether rat cathelicidin-related anti-microbial peptide (rCRAMP) can influence mast cell activity. We have demonstrated that activation of fully mature rat mast cells with rCRAMP resulted in generation and release of cysteinyl leukotrienes (cysLTs). However, rCRAMP failed to induce mast cell degranulation and histamine release. We also found that rCRAMP stimulated rat mast cells to synthesize TNF, but not CXCL8. What is more, this peptide induced GM-CSF, IL-1ß, CCL2 and CCL3 but not IL-33 mRNA expression in mast cells. Finally, we showed that this cathelicidin serves as potent chemoattractant for rat mast cells. rCRAMP-mediated cysLT synthesis and mast cell migration were strongly inhibited by IL-10 pre-treatment. With the use of specific inhibitors, we established that activation of PLC/A2 and ERK1/2, but not p38, was required for rCRAMP-induced mast cell stimulation, while PI3K-dependent pathway is involved in both TNF synthesis and mast cell migration. Our results suggest that cathelicidins can amplify inflammatory responses by causing mast cells accumulation and by stimulating these cells to release potent pro-inflammatory mediators.


Assuntos
Catelicidinas/farmacologia , Movimento Celular/efeitos dos fármacos , Cisteína/biossíntese , Leucotrienos/biossíntese , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fatores de Necrose Tumoral/biossíntese , Animais , Peptídeos Catiônicos Antimicrobianos , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Movimento Celular/imunologia , Citocinas/biossíntese , Feminino , Expressão Gênica , Liberação de Histamina/efeitos dos fármacos , Liberação de Histamina/imunologia , Mastócitos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Fosforilação , RNA Mensageiro , Ratos , Transdução de Sinais/efeitos dos fármacos
13.
Microbiol Spectr ; 12(8): e0333923, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39012112

RESUMO

Chagas disease, leishmaniasis, and malaria are major parasitic diseases disproportionately affecting the underprivileged population in developing nations. Finding new, alternative anti-parasitic compounds to treat these diseases is crucial because of the limited number of options currently available, the side effects they cause, the need for long treatment courses, and the emergence of drug-resistant parasites. Anti-microbial peptides (AMPs) derived from amphibian skin secretions are small bioactive molecules capable of lysing the cell membrane of pathogens while having low toxicity against human cells. Here, we report the anti-parasitic activity of five AMPs derived from skin secretions of three Ecuadorian frogs: cruzioseptin-1, cruzioseptin-4 (CZS-4), and cruzioseptin-16 from Cruziohyla calcarifer; dermaseptin-SP2 from Agalychnis spurrelli; and pictuseptin-1 from Boana picturata. These five AMPs were chemically synthesized. Initially, the hemolytic activity of CZS-4 and its minimal inhibitory concentration against Escherichia coli, Staphylococcus aureus, and Candida albicans were determined. Subsequently, the cytotoxicity of the synthetic AMPs against mammalian cells and their anti-parasitic activity against Leishmania mexicana promastigotes, erythrocytic stages of Plasmodium falciparum and mammalian stages of Trypanosoma cruzi were evaluated in vitro. The five AMPs displayed activity against the pathogens studied, with different levels of cytotoxicity against mammalian cells. In silico molecular docking analysis suggests this bioactivity may occur via pore formation in the plasma membrane, resulting in microbial lysis. CZS-4 displayed anti-bacterial, anti-fungal, and anti-parasitic activities with low cytotoxicity against mammalian cells. Further studies about this promising AMP are required to gain a better understanding of its activity.IMPORTANCEChagas disease, malaria, and leishmaniasis are major tropical diseases that cause extensive morbidity and mortality, for which available treatment options are unsatisfactory because of limited efficacy and side effects. Frog skin secretions contain molecules with anti-microbial properties known as anti-microbial peptides. We synthesized five peptides derived from the skin secretions of different species of tropical frogs and tested them against cultures of the causative agents of these three diseases, parasites known as Trypanosoma cruzi, Plasmodium falciparum, and Leishmania mexicana. All the different synthetic peptides studied showed activity against one of more of the parasites. Peptide cruzioseptin-4 is of special interest since it displayed intense activity against parasites while being innocuous against cultured mammalian cells, which indicates it does not simply hold general toxic properties; rather, its activity is specific against the parasites.


Assuntos
Anuros , Leishmania mexicana , Plasmodium falciparum , Pele , Trypanosoma cruzi , Animais , Trypanosoma cruzi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Humanos , Leishmania mexicana/efeitos dos fármacos , Pele/parasitologia , Pele/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/química , Equador , Doença de Chagas/tratamento farmacológico
14.
Microorganisms ; 11(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38004789

RESUMO

Anti-microbial peptides play a vital role in the defense mechanisms of various organisms performing functions that range from the elimination of microorganisms, through diverse mechanisms, to the modulation of the immune response, providing protection to the host. Among these peptides, cathelicidins, a well-studied family of anti-microbial peptides, are found in various animal species, including reptiles. Due to the rise in anti-microbial resistance, these compounds have been suggested as potential candidates for developing new drugs. In this study, we identified and characterized a cathelicidin-like peptide called Aquiluscidin (Aq-CATH) from transcripts obtained from the skin and oral mucosa of the Querétaro's dark rattlesnake, Crotalus aquilus. The cDNA was cloned, sequenced, and yielded a 566-base-pair sequence. Using bioinformatics, we predicted that the peptide precursor contains a signal peptide, a 101-amino-acid conserved cathelin domain, an anionic region, and a 34-amino-acid mature peptide in the C-terminal region. Aq-CATH and a derived 23-amino-acid peptide (Vcn-23) were synthesized, and their anti-microbial activity was evaluated against various species of bacteria in in vitro assays. The minimal inhibitory concentrations against bacteria ranged from 2 to 8 µg/mL for both peptides. Furthermore, at concentrations of up to 50 µM, they exhibited no significant hemolytic activity (<2.3% and <1.2% for Aquiluscidin and Vcn-23, respectively) against rat erythrocytes and displayed no significant cytotoxic activity at low concentrations (>65% cell viability at 25 µM). Finally, this study represents the first identification of an antimicrobial peptide in Crotalus aquilus, which belongs to the cathelicidin family and exhibits the characteristic features of these peptides. Both Aq-CATH and its derived molecule, Vcn-23, displayed remarkable inhibitory activity against all tested bacteria, highlighting their potential as promising candidates for further antimicrobial research.

15.
Matrix Biol ; 115: 71-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574533

RESUMO

Acute and chronic alcohol exposure compromise intestinal epithelial integrity, due to reduced expression of anti-microbial peptides (AMP) and loss of tight junction integrity. Ameliorating gut damage is beneficial in preventing associated distant organ pathologies. Orally administered purified hyaluronan (HA) polymers with an average size of 35 kDa have multiple protective effects in the gut and are well-tolerated in humans. Therefore, we tested the hypothesis that HA35 ameliorates ethanol-induced gut damage. Specifically, mechanisms that restore epithelial barrier integrity and normalize expression of the Reg3 class of C-type lectin AMPs (i.e. Reg3ß and Reg3γ) were investigated. Chronic ethanol feeding to mice reduced expression of C-type lectin AMPs in the proximal small intestine (jejunum), reduced expression of tight junction proteins and increased bacterial translocation to the mesenteric lymph node. Oral consumption of HA35 during the last 6 days of ethanol exposure ameliorated the effects of chronic ethanol. Similarly, in vitro challenge of isolated intestinal organoids from murine jejunum with ethanol reduced the expression of C-type lectin AMPs and impaired barrier integrity; these ethanol-induced responses were prevented by pre-treatment with HA35. Importantly, HA receptor null jejunum-derived organoids demonstrated that the HA receptor Tlr4, but not Cd44 nor Tlr2, was required for the protective effect of HA35. Consistent with the data from organoids, HA35 did not protect Tlr4-deficient mice from chronic ethanol-induced intestinal injury. Together, these data suggest therapeutic administration of HA35 is beneficial in restoring gut epithelial integrity and defense during the early stages of ethanol-driven intestinal damage.


Assuntos
Etanol , Ácido Hialurônico , Humanos , Camundongos , Animais , Etanol/toxicidade , Ácido Hialurônico/metabolismo , Receptor 4 Toll-Like/genética , Lectinas Tipo C
16.
J Alzheimers Dis ; 92(1): 29-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710681

RESUMO

Amyloid-ß protein precursor (AßPP) gives rise to amyloid-ß (Aß), a peptide at the center of Alzheimer's disease (AD). AßPP, however, is also an ancient molecule dating back in evolution to some of the earliest forms of metazoans. This suggests a possible ancestral function that may have been obscured by those that evolve later. Based on literature from the functions of Aß/AßPP in nervous system development, plasticity, and disease, to those of anti-microbial peptides (AMPs) in bacterial competition as well as mechanisms of cell competition uncovered first by Drosophila genetics, I propose that Aß/AßPP may be part of an ancient mechanism employed in cell competition, which is subsequently co-opted during evolution for the regulation of activity-dependent neural circuit development and plasticity. This hypothesis is supported by foremost the high similarities of Aß to AMPs, both of which possess unique, opposite (i.e., trophic versus toxic) activities as monomers and oligomers. A large body of data further suggests that the different Aß oligomeric isoforms may serve as the protective and punishment signals long predicted to mediate activity-dependent axonal/synaptic competition in the developing nervous system and that the imbalance in their opposite regulation of innate immune and glial cells in the brain may ultimately underpin AD pathogenesis. This hypothesis can not only explain the diverse roles observed of Aß and AßPP family molecules, but also provide a conceptual framework that can unify current hypotheses on AD. Furthermore, it may explain major clinical observations not accounted for and identify approaches for overcoming shortfalls in AD animal modeling.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Axônios/patologia , Sinapses/metabolismo , Encéfalo/patologia
17.
Comput Struct Biotechnol J ; 21: 1995-2008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950221

RESUMO

The vital cellular functions in Gram-positive bacteria are controlled by signaling molecules known as quorum sensing peptides (QSPs), considered promising therapeutic interventions for bacterial infections. In the bacterial system QSPs bind to membrane-coupled receptors, which then auto-phosphorylate and activate intracellular response regulators. These response regulators induce target gene expression in bacteria. One of the most reliable trends in drug discovery research for virulence-associated molecular targets is the use of peptide drugs or new functionalities. In this perspective, computational methods act as auxiliary aids for biologists, where methodologies based on machine learning and in silico analysis are developed as suitable tools for target peptide identification. Therefore, the development of quick and reliable computational resources to identify or predict these QSPs along with their receptors and inhibitors is receiving considerable attention. The databases such as Quorumpeps and Quorum Sensing of Human Gut Microbes (QSHGM) provide a detailed overview of the structures and functions of QSPs. The tools and algorithms such as QSPpred, QSPred-FL, iQSP, EnsembleQS and PEPred-Suite have been used for the generic prediction of QSPs and feature representation. The availability of compiled key resources for utilizing peptide features based on amino acid composition, positional preferences, and motifs as well as structural and physicochemical properties, including biofilm inhibitory peptides, can aid in elucidating the QSP and membrane receptor interactions in infectious Gram-positive pathogens. Herein, we present a comprehensive survey of diverse computational approaches that are suitable for detecting QSPs and QS interference molecules. This review highlights the utility of these methods for developing potential biomarkers against infectious Gram-positive pathogens.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35661821

RESUMO

Removal of infected wounds using maggots has been known for centuries. Early research has shown that the maggot exosecretion, whole body, and fecal waste products of Calliphoridae and Sarcophagidae species contain a variety of alkaline peptides capable of inhibiting bacterial growth. Since the wide application of antibiotics such as penicillin, a number of bacterial infections have become insensitive to antibiotic treatment. In many of these instances, maggot therapy has been successfully applied for the treatment of chronic wounds. To identify and compare the expression patterns of anti-microbial peptides (AMPs) from some dipteran species, transcriptome analyses were conducted for the maggots of 11 Calliphoridae and Sarcophagidae species. Species of the subfamily Calliphorinae showed relatively higher expression levels of AMPs and anti-microbial proteins compared with those of Luciliinae and Sarcophagidae species. Furthermore, among all of the dipteran species examined, Lucilia illustris exhibited the highest transcription levels of AMPs. Cecropin A2 and defensin, whose expression levels were the highest among the anti-microbial peptides, were synthesized to test their biological activity. The synthesized peptides showed anti-microbial activities without hemolytic activities. In particular, cecropin A2 of L. illustris exhibited the highest anti-microbial activity against all of the bacteria and fungi examined, thereby possessing the potential to be developed as a new alternative to antibiotics. This comparative transcriptomic study may provide new insights into anti-microbial compositions of some dipteran species.


Assuntos
Cecropinas , Dípteros , Sarcofagídeos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Calliphoridae , Cecropinas/metabolismo , Larva , Peptídeos/farmacologia
19.
Inform Med Unlocked ; 29: 100886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252541

RESUMO

Coronaviruses, including the recent pandemic strain SARS-Cov-2, use a multifunctional 2'-O-methyltransferase (2'-O-MTase) to restrict the host defense mechanism and to methylate RNA. The nonstructural protein 16 2'-O-MTase (nsp16) becomes active when nonstructural protein 10 (nsp10) and nsp16 interact. Novel peptide drugs have shown promise in the treatment of numerous diseases and new research has established that nsp10 derived peptides can disrupt viral methyltransferase activity via interaction of nsp16. This study had the goal of optimizing new analogous nsp10 peptides that have the ability to bind nsp16 with equal to or higher affinity than those naturally occurring. The following research demonstrates that in silico molecular simulations can shed light on peptide structures and predict the potential of new peptides to interrupt methyltransferase activity via the nsp10/nsp16 interface. The simulations suggest that misalignments at residues F68, H80, I81, D94, and Y96 or rotation at H80 abrogate MTase function. We develop a new set of peptides based on conserved regions of the nsp10 protein in the Coronaviridae species and test these to known MTase variant values. This results in the prediction that the H80R variant is a solid new candidate for potential new testing. We envision that this new lead is the beginning of a reputable foundation of a new computational method that combats coronaviruses and that is beneficial for new peptide drug development.

20.
J Biol Rhythms ; 36(1): 84-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428509

RESUMO

The circadian field has come a long way since I started as a postdoctoral fellow ~30 years ago. At the time, the only known animal clock gene was period, so I had the privilege of witnessing, and participating in, the molecular revolution that took us from the discovery of the circadian clock mechanism to the identification of pathways that link clocks to behavior and physiology. This lecture highlights my role and perspective in these developments, and also demonstrates how the successful use of Drosophila for studies of circadian rhythms inspired us to develop a fly model for sleep. I also touch upon my experiences as a non-white immigrant woman navigating my way through the US science and education system, and hope my story will be of interest to some.


Assuntos
Cronobiologia/história , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Drosophila melanogaster/genética , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Modelos Animais , Sono/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa