Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35915052

RESUMO

Antibiotic combination is a promising strategy to extend the lifetime of antibiotics and thereby combat antimicrobial resistance. However, screening for new antibiotic combinations is both time-consuming and labor-intensive. In recent years, an increasing number of researchers have used computational models to predict effective antibiotic combinations. In this review, we summarized existing computational models for antibiotic combinations and discussed the limitations and challenges of these models in detail. In addition, we also collected and summarized available data resources and tools for antibiotic combinations. This study aims to help computational biologists design more accurate and interpretable computational models.


Assuntos
Antibacterianos , Biologia Computacional , Antibacterianos/uso terapêutico , Simulação por Computador , Bases de Dados Factuais , Sinergismo Farmacológico
2.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478112

RESUMO

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Assuntos
Ciprofloxacina , Klebsiella pneumoniae , Humanos , Ciprofloxacina/farmacologia , Klebsiella pneumoniae/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Testes de Sensibilidade Microbiana
3.
Helicobacter ; 29(3): e13081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717008

RESUMO

BACKGROUND: The main antibiotics used against Helicobacter pylori have been chosen empirically over time, with few preclinical studies to provide support. The rise in resistance to some of these antibiotics is prompting a reassessment of their use. This work aimed to evaluate the in vitro efficacy of 2 × 2 combinations of the most widely used antibiotics against H. pylori. MATERIALS AND METHODS: J99 reference strains and 19 clinical isolates of H. pylori with various antibiotic resistance phenotypes were used. Minimum inhibitory concentrations were carried out using the microdilution method in 96-well plates. The activity of 15 possible combinations of two antibiotics including amoxicillin, clarithromycin (CLA), levofloxacin, rifampicin, tetracycline, and metronidazole was determined for all strains by the checkerboard method. A mean fractional inhibitory concentration index (FICmean) was calculated for each combination and strain and the type of pharmacodynamic interaction was considered as synergic if FICmean ≤ 0.5, additive if 0.5 < FICmean ≤ 1, indifferent if 1 < FICmean < 4 or antagonistic if FICmean ≥ 4. RESULTS: Most of the 285 pharmacodynamic interactions tested with clinical strains were close to additivity (average FICmean = 0.89 [0.38-1.28]). No interaction was found to be antagonistic. When two antibiotics to which a strain was resistant were combined, the concentrations required to inhibit bacterial growth were higher than their respective breakpoints. CONCLUSION: The present results have shown that in vitro, the different antibiotics used in therapeutics have additive effects. The addition of the effects of two antibiotics to which a strain was resistant was not sufficient to inhibit bacterial growth. In probabilistic treatment, the choice of antibiotics to combine should therefore be based on the local epidemiology of resistance, and on susceptibility testing in the case of CLA therapy, so that at least one antibiotic to which the strain is susceptible is used.


Assuntos
Antibacterianos , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Farmacorresistência Bacteriana , Quimioterapia Combinada , Sinergismo Farmacológico
4.
Antimicrob Agents Chemother ; 67(2): e0130722, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36625642

RESUMO

Phenotypic heterogeneity is crucial to bacterial survival and could provide insights into the mechanism of action (MOA) of antibiotics, especially those with polypharmacological actions. Although phenotypic changes among individual cells could be detected by existing profiling methods, due to the data complexity, only population average data were commonly used, thereby overlooking the heterogeneity. In this study, we developed a high-resolution bacterial cytological profiling method that can capture morphological variations of bacteria upon antibiotic treatment. With an unprecedented single-cell resolution, this method classifies morphological changes of individual cells into known MOAs with an overall accuracy above 90%. We next showed that combinations of two antibiotics induce altered cell morphologies that are either unique or similar to that of an antibiotic in the combinations. With these combinatorial profiles, this method successfully revealed multiple cytological changes caused by a natural product-derived compound that, by itself, is inactive against Acinetobacter baumannii but synergistically exerts its multiple antibacterial activities in the presence of colistin. The findings have paved the way for future single-cell profiling in bacteria and have highlighted previously underappreciated intrapopulation variations caused by antibiotic perturbation.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Colistina/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 67(11): e0072823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37877697

RESUMO

Pseudomonas aeruginosa-associated infective endocarditis represents difficult-to-treat, deep-seated infections. Phage-antibiotic combinations have shown to eradicate multi-drug resistant (MDR) P. aeruginosa, limit the development of phage resistance, and restore antibiotic sensitivity. The objective of this study was to evaluate the activity of phage-ciprofloxacin (CIP) combinations in 4-day ex vivo simulated endocardial vegetation (SEV) models against drug-resistant P. aeruginosa isolates. Two P. aeruginosa isolates, extensively drug-resistant AR351 and MDR I0003-1, were selected for their drug resistance and sensitivity to phage. Three phages [LL-5504721-AH (LL), E2005-C (EC), and 109] and CIP were evaluated alone and in combination for their activity and influence on drug and phage resistance using 24-h time-kill analysis. The three-phage cocktail (q24h) in combination with CIP (400 mg q12h) was then tested in dynamic 4-day ex vivo SEV models, with reduction of log10 CFU/mL compared using ANOVA with Bonferroni analysis. Compared to other combinations, CIP-LL-EC-109 demonstrated synergistic and bactericidal activity from starting CFU/g against AR351 and I0003-1 (-Δ5.65 and 6.60 log10 CFU/g, respectively; P < 0.001). Additionally, CIP-LL-EC-109 mitigated phage resistance, while all other therapies had a high degree of resistance to >1 phages, and all phage-containing regimens prevented CIP mean inhibitory concentration increases compared to CIP alone for both AR351 and I0003-1 at 96 h.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Infecções por Pseudomonas/terapia
6.
Ann Clin Microbiol Antimicrob ; 22(1): 23, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013561

RESUMO

BACKGROUND: Methicillin-Resistant Staphylococcus aureus (MRSA) causes life-threatening infections, with narrow therapeutic options including: vancomycin and linezolid. Accordingly, this study aimed to characterize phenotypically and genotypically, the most relevant means of linezolid resistance among some MRSA clinical isolates. METHODS: A total of 159 methicillin-resistant clinical isolates were collected, of which 146 were indentified microscopically and biochemically as MRSA. Both biofilm formation and efflux pump activity were assessed for linezolid-resistant MRSA (LR-MRSA) using the microtiter plate and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) methods, respectively. Linezolid resistance was further characterized by polymerase chain reaction (PCR) amplification and sequencing of domain V of 23 S rRNA; rplC; rplD;and rplV genes. Meanwhile, some resistance genes were investigated: cfr; cfr(B); optrA; msrA;mecA; and vanA genes. To combat LR-MRSA, the effect of combining linezolid with each of 6 different antimicrobials was investigated using the checkerboard assay. RESULTS: Out of the collected MRSA isolates (n = 146), 5.48% (n = 8) were LR-MRSA and 18.49% (n = 27) were vancomycin-resistant (VRSA). It is worth noting that all LR-MRSA isolates were also vancomycin-resistant. All LR-MRSA isolates were biofilm producers (r = 0.915, p = 0.001), while efflux pumps upregulation showed no significant contribution to development of resistance (t = 1.374, p = 0.212). Both mecA and vanA genes were detected in 92.45% (n = 147) and 6.92% (n = 11) of methicillin-resistant isolates, respectively. In LR-MRSA isolates, some 23 S rRNA domain V mutations were observed: A2338T and C2610G (in 5 isolates); T2504C and G2528C (in 2 isolates); and G2576T (in 1 isolate). Amino acids substitutions were detected: in L3 protein (rplC gene) of (3 isolates) and in L4 protein (rplD gene) of (4 isolates). In addition, cfr(B) gene was detected (in 3 isolates). In 5 isolates, synergism was recorded when linezolid was combined with chloramphenicol, erythromycin, or ciprofloxacin. Reversal of linezolid resistance was observed in some LR-MRSA isolates when linezolid was combined with gentamicin or vancomycin. CONCLUSIONS: LR-MRSA biofilm producers' phenotypes evolved in the clinical settings in Egypt. Various antibiotic combinations with linezolid were evaluated in vitro and showed synergistic effects.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Linezolida/farmacologia , Vancomicina/farmacologia , Antibacterianos/farmacologia , Fenótipo , Testes de Sensibilidade Microbiana
7.
Antimicrob Agents Chemother ; 66(1): e0162321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723631

RESUMO

Enterococcus faecium is a significant multidrug-resistant pathogen. Bacteriophage cocktails are being proposed to complement antibiotic therapy. After a screen of 8 E. faecium strains against 4 phages, 2 phages (113 and 9184) with the broadest host ranges were chosen for further experiments. Transmission electron microscopy, whole-genome sequencing, comparative genome analyses, and time-kill analyses were performed. Daptomycin (DAP) plus the phage cocktail (113 [myophage] and 9184 [siphopage]) showed bactericidal activity in most regimens, while DAP addition prevented phage 9184 resistance against daptomycin-nonsusceptible E. faecium.


Assuntos
Bacteriófagos , Daptomicina , Enterococcus faecium , Antibacterianos/farmacologia , Bacteriófagos/genética , Daptomicina/farmacologia , Enterococcus faecium/genética , Testes de Sensibilidade Microbiana
8.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499363

RESUMO

Antibiotic resistance has become a major public health concern around the world. This is exacerbated by the non-discovery of novel drugs, the development of resistance mechanisms in most of the clinical isolates of bacteria, as well as recurring infections, hindering disease treatment efficacy. In vitro data has shown that antibiotic combinations can be effective when microorganisms are resistant to individual drugs. Recently, advances in the direction of combination therapy for the treatment of multidrug-resistant (MDR) bacterial infections have embraced antibiotic combinations and the use of nanoparticles conjugated with antibiotics. Nanoparticles (NPs) can penetrate the cellular membrane of disease-causing organisms and obstruct essential molecular pathways, showing unique antibacterial mechanisms. Combined with the optimal drugs, NPs have established synergy and may assist in regulating the general threat of emergent bacterial resistance. This review comprises a general overview of antibiotic combinations strategies for the treatment of microbial infections. The potential of antibiotic combinations with NPs as new entrants in the antimicrobial therapy domain is discussed.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bactérias , Testes de Sensibilidade Microbiana
9.
Appl Environ Microbiol ; 87(15): e0046821, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34020940

RESUMO

The common cooccurrence of antibiotics and phages in both natural and engineered environments underscores the need to understand their interactions and implications for bacterial control and antibiotic resistance propagation. Here, aminoglycoside antibiotics that inhibit protein synthesis (e.g., kanamycin and neomycin) impeded the replication of coliphage T3 and Bacillus phage BSP, reducing their infection efficiency and mitigating their hindrance of bacterial growth, biofilm formation, and tolerance to antibiotics. For example, treatment with phage T3 reduced subsequent biofilm formation by Escherichia coli liquid cultures to 53% ± 5% of that of the no-phage control, but a smaller reduction of biofilm formation (89% ± 10%) was observed for combined exposure to phage T3 and kanamycin. Despite sharing a similar mode of action with aminoglycosides (i.e., inhibiting protein synthesis) and antagonizing phage replication, albeit to a lesser degree, tetracyclines did not inhibit bacterial control by phages. Phage T3 combined with tetracycline showed higher suppression of biofilm formation than when combined with aminoglycosides (25% ± 6% of the no-phage control). The addition of phage T3 to E. coli suspensions with tetracycline also suppressed the development of tolerance to tetracycline. However, this suppression of antibiotic tolerance development disappeared when tetracycline was replaced with 3 mg/liter kanamycin, corroborating the greater antagonism with aminoglycosides. Overall, this study highlights this overlooked antagonistic effect on phage proliferation, which may attenuate phage suppression of bacterial growth, biofilm formation, antibiotic tolerance, and maintenance of antibiotic resistance genes. IMPORTANCE The coexistence of residual antibiotics and phages is common in many environments, which underscores the need to understand their interactive effects on bacteria and the implications for antibiotic resistance propagation. Here, aminoglycosides acting as bacterial protein synthesis inhibitors impeded the replication of various phages. This alleviated the suppressive effects of phages against bacterial growth and biofilm formation and diminished bacterial fitness costs that suppress the emergence of tolerance to antibiotics. We show that changes in bacteria caused by environmentally relevant concentrations of sublethal antibiotics can affect phage-host dynamics that are commonly overlooked in vitro but can result in unexpected environmental consequences.


Assuntos
Antibacterianos/farmacologia , Fagos Bacilares/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Bacteriófago T3/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Canamicina/farmacologia , Neomicina/farmacologia , Fagos Bacilares/crescimento & desenvolvimento , Bacillus cereus/fisiologia , Bacillus cereus/virologia , Bacteriófago T3/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/virologia , Tetraciclina/farmacologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-32571816

RESUMO

Concerns regarding increased prevalence of daptomycin (DAP)-resistant strains necessitate novel therapies for Enterococcus faecium infections. Obligately lytic bacteriophages are viruses that target, infect, and kill bacterial cells. Limited studies have evaluated phage-antibiotic combinations against E. faecium After an initial screen of eight E. faecium strains, three strains with varying DAP/phage susceptibilities were selected for further experiments. Phage-to-strain specificity contributed to synergy with antibiotics by time-kill analyses and was associated with lower development of phage resistance.


Assuntos
Antibacterianos , Daptomicina , Enterococcus faecium , Terapia por Fagos , Antibacterianos/farmacologia , Bacteriófagos , Daptomicina/farmacologia , Infecções por Bactérias Gram-Positivas/terapia , Humanos , Testes de Sensibilidade Microbiana
11.
Artigo em Inglês | MEDLINE | ID: mdl-32122901

RESUMO

In India and China, indigenous drug manufacturers market arbitrarily combined parenteral ß-lactam and ß-lactamase inhibitors (BL-BLIs). In these fixed-dose combinations, sulbactam or tazobactam is indiscriminately combined with parenteral cephalosporins, with BLI doses kept in ratios similar to those for the approved BL-BLIs. Such combinations have been introduced into clinical practice without mandatory drug development studies involving pharmacokinetic/pharmacodynamic, safety, and efficacy assessments being undertaken. Such unorthodox combinations compromise clinical outcomes and also potentially contribute to resistance development.


Assuntos
Antibacterianos/uso terapêutico , Gestão de Antimicrobianos , Cefalosporinas/uso terapêutico , Uso Indevido de Medicamentos , Prescrição Inadequada , Sulbactam/uso terapêutico , Tazobactam/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , China , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Humanos , Índia , Testes de Sensibilidade Microbiana , Assistência ao Paciente , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Inibidores de beta-Lactamases/uso terapêutico
12.
Artigo em Inglês | MEDLINE | ID: mdl-31182535

RESUMO

Multidrug-resistant (MDR) Gram-negative organisms are a major health concern due to lack of effective therapy. Emergence of resistance to newer agents like ceftazidime-avibactam (CZA) further magnifies the problem. In this context, combination therapy of CZA with other antimicrobials may have potential in treating these pathogens. Unfortunately, there are limited data regarding these combinations. Therefore, the objective of this study was to evaluate CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains. The potential for synergy was evaluated via MIC combination evaluation and time-kill assays. All strains were further characterized by whole-genome sequencing, quantitative real-time PCR, and SDS-PAGE analysis to determine potential mechanisms of resistance. Compared to CZA alone, we observed a 4-fold decrease in CZA MICs for a majority of K. pneumoniae strains and at least a 2-fold decrease for most P. aeruginosa isolates in the majority of combinations tested. In both P. aeruginosa and K. pneumoniae strains, CZA in combination with AMK or AZT was synergistic (≥2.15-log10 CFU/ml decrease). CZA-MEM was effective against P. aeruginosa and CZA-FOS was effective against K. pneumoniae Time-kill analysis also revealed that the synergy of CZA with MEM or AZT may be due to the previously reported restoration of MEM or AZT activity against these organisms. Our findings show that CZA in combination with these antibiotics has potential for therapeutic options in difficult to treat pathogens. Further evaluation of these combinations is warranted.


Assuntos
Amicacina/farmacologia , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Ceftazidima/farmacologia , Colistina/farmacologia , Fosfomicina/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Meropeném/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
13.
Artigo em Inglês | MEDLINE | ID: mdl-29784849

RESUMO

Infections caused by biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) bacteria are challenging due to increasing antibiotic resistance. Synergistic activities of lipopeptides and lipoglycopeptides with ß-lactams have been demonstrated for MRSA, but little is known about biofilm-embedded organisms. Our objective was to evaluate two telavancin (TLV) dosage regimens (7.5 mg/kg of body weight and 10 mg/kg every 24 h [q24h]) alone and in combination with ceftaroline (CPT) (600 mg every 8 h [q8h]) or rifampin (RIF) (450 mg every 12 h [q12h]) against two biofilm-producing MRSA strains (494 and N315). Pharmacokinetic/pharmacodynamic CDC biofilm reactor models with polyurethane coupons were used to evaluate the efficacies of the antibiotic combinations over 72 h. Overall, there were no significant differences observed between the two TLV dosing regimens either alone or in combination with RIF or CPT against these strains. Both TLV dosing regimens and CPT alone demonstrated killing but did not reach bactericidal reduction at 72 h. However, both TLV regimens in combination with RIF demonstrated enhanced activity against both strains, with a rapid decrease in CFU/ml at 4 h that was bactericidal and maintained over the 72-h experiment (-Δ3.75 log10 CFU/ml from baseline; P < 0.0001). Of interest, no enhanced activity was observed for TLV combined with CPT. No development of resistance was observed in any of the combination models. However, resistance to RIF developed as early as 24 h, with MIC values exceeding 32 mg/liter. Our results show that TLV plus RIF displayed therapeutic improvement against biofilm-producing MRSA. These results suggest that TLV at 7.5 and 10 mg/kg q24h are equally effective in eradicating biofilm-associated MRSA strains in vitro.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Lipoglicopeptídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Rifampina/farmacologia , Biofilmes/efeitos dos fármacos , Ceftarolina
14.
Artigo em Inglês | MEDLINE | ID: mdl-29760147

RESUMO

Mycobacterium abscessus is a rapidly emerging mycobacterial pathogen causing dangerous pulmonary infections. Because these bacteria are intrinsically multidrug resistant, treatment options are limited and have questionable efficacy. The current treatment regimen relies on a combination of antibiotics, including clarithromycin paired with amikacin and either imipenem or cefoxitin. Tigecycline may be added when triple therapy is ineffective. We initially screened a library containing the majority of clinically available antibiotics for anti-M. abscessus activity. The screen identified rifabutin, which was then investigated for its interactions with M. abscessus antibiotics used in drug regimens. Combination of rifabutin with either clarithromycin or tigecycline generated synergistic anti-M. abscessus activity, dropping the rifabutin MIC below concentrations found in the lung. Importantly, these combinations generated bactericidal activity. The triple combination of clarithromycin, tigecycline, and rifabutin was also synergistic, and clinically relevant concentrations had a sterilizing effect on M. abscessus cultures. We suggest that combinations including rifabutin should be further investigated for treatment of M. abscessus pulmonary infections.


Assuntos
Antibacterianos/farmacologia , Claritromicina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Mycobacterium abscessus/efeitos dos fármacos , Rifabutina/farmacologia , Tigeciclina/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium abscessus/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Microb Pathog ; 111: 163-167, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28867619

RESUMO

Clostridium difficile (C.difficile) infection is often established in the presence of antibiotics and probably antibiotics can influence surface layer protein A (slpA) expression as a colonization factor. The aim of this study is to evaluate the effect of vancomycin (VAN), clindamycin (CLI) alone and in combination with ceftazidime (CAZ) on slpA gene expression to determine whether such antibiotics can have any effect on slpA expression. About ∼106 CFU/mL was inoculated to medium containing an appropriate concentration of antibiotics alone and in combination. After 24 and 48 h incubation under anaerobic condition, 3 mL of culture was excluded and centrifuged in 8000 × g per 3 min. The pellet was washed and used for RNA extraction. The RNA extraction, Dnase I treatment and cDNA synthesis was performed by RNA extraction, Dnase I, and cDNA synthesis kits, respectively. The real-time PCR were carried out by sybrGreen methods and data were analyzed based on comparative ΔΔCT. All antibiotics alone and in combination, except VAN/CAZ in clinical isolate, decreased the level of slpA gene expression in the 24-h incubation. While the expression profile of slpA was different in the 48-h incubation period. The VAN and CLI decreased the slpA expression, although the template of expression is closed to control medium. CAZ alone and in combination increased slpA expression. C. difficile may down-regulate slpA expression in the early stages of growth in sub-inhibitory concentration of antibiotics. But, over time C. difficile increases or over expresses the slpA expression level. Consequently C. difficile binds strongly to epithelial cells and continues to survive in the presence of sub-MIC concentration of antibiotics. This effect is observed especially with regard to CAZ and probably other third generation cephalosporins or in combination therapy with VAN or CLI, which are prescribed in the clinic. CAZ can interfere with the anti-down regulatory feature of VAN, CLI, and maybe other antibiotics.


Assuntos
Proteínas de Bactérias/genética , Ceftazidima/farmacologia , Clindamicina/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Vancomicina/farmacologia , Infecções por Clostridium , Combinação de Medicamentos , Células Epiteliais/microbiologia , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , Fatores de Tempo
16.
J Infect Chemother ; 23(5): 312-318, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28341517

RESUMO

Combined effects of penicillin (PEN) and gentamicin (GM) against Streptococcus agalactiae, i.e. group B streptococci (GBS), are known to occur, but synergy has not been examined in strains with reduced PEN susceptibility, usually called PEN-resistant GBS (PRGBS). We therefore studied combined effects of ß-lactam antibiotics and GM in cultures of 3 PRGBS strains belonging to serotype Ia or III that were isolated from Japanese adults with invasive infections. Killing kinetics were determined at 2-h intervals from 0 to 6 h after exposure to ampicillin (AMP) or cefotaxime (CTX) combined with GM. Concentrations of GM in bacterial cells were measured by liquid chromatography-tandem mass spectrometry. Morphologic changes after exposure to agents were observed by transmission electron microscopy. Combining AMP or CTX with GM synergistically increased bactericidal activity against PRGBS beyond that of either ß-lactam alone. GM concentrations in bacterial cells increased 5- to 8-fold when GM was combined with AMP or CTX. Electron microscopically, bacterial cells showed aggregates of strands and ribosomal damage most likely reflecting enhanced GM uptake into bacterial cells. This uptake appeared to result from cell wall damage caused by ß-lactam antibiotics. This study suggests that combining ß-lactam antibiotics with GM might be useful against severe PRGBS infection.


Assuntos
Antibacterianos/farmacologia , Gentamicinas/farmacologia , Penicilinas/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus agalactiae/efeitos dos fármacos , beta-Lactamas/farmacologia , Ampicilina/farmacologia , Humanos , Testes de Sensibilidade Microbiana/métodos
17.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585790

RESUMO

Antibiotic resistance, especially in multidrug-resistant ESKAPE pathogens, remains a worldwide problem. Combination antimicrobial therapies may be an important strategy to overcome resistance and broaden the spectrum of existing antibiotics. However, this strategy is limited by the ability to efficiently screen large combinatorial chemical spaces. Here, we deployed a high-throughput combinatorial screening platform, DropArray, to evaluate the interactions of over 30,000 compounds with up to 22 antibiotics and 6 strains of Gram-negative ESKAPE pathogens, totaling to over 1.3 million unique strain-antibiotic-compound combinations. In this dataset, compounds more frequently exhibited synergy with known antibiotics than single-agent activity. We identified a compound, P2-56, and developed a more potent analog, P2-56-3, which potentiated rifampin (RIF) activity against Acinetobacter baumannii and Klebsiella pneumoniae. Using phenotypic assays, we showed P2-56-3 disrupts the outer membrane of A. baumannii. To identify pathways involved in the mechanism of synergy between P2-56-3 and RIF, we performed genetic screens in A. baumannii. CRISPRi-induced partial depletion of lipooligosaccharide transport genes (lptA-D, lptFG) resulted in hypersensitivity to P2-56-3/RIF treatment, demonstrating the genetic dependency of P2-56-3 activity and RIF sensitization on lpt genes in A. baumannii. Consistent with outer membrane homeostasis being an important determinant of P2-56-3/RIF tolerance, knockout of maintenance of lipid asymmetry complex genes and overexpression of certain resistance-nodulation-division efflux pumps - a phenotype associated with multidrug-resistance - resulted in hypersensitivity to P2-56-3. These findings demonstrate the immense scale of phenotypic antibiotic combination screens using DropArray and the potential for such approaches to discover new small molecule synergies against multidrug-resistant ESKAPE strains.

18.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931436

RESUMO

BACKGROUND: Due to its rapid resistance development and ability to form biofilms, treatment of Pseudomonas aeruginosa infections is becoming more complicated by the day. Drug combinations may help reduce both resistance and biofilm formation. METHODS: Using the microtiter plate assay, we investigated the in vitro inhibition of biofilm formation and the disruption of preformed biofilms in multidrug-resistant and extensively drug-resistant clinical isolates of P. aeruginosa in the presence of peak plasma levels of eight antipseudomonal antibiotics alone and in combination with fosfomycin: ceftazidime, piperacillin/tazobactam, cefepime, imipenem, gentamicin, amikacin, ciprofloxacin and colistin. RESULTS: Combination therapy was significantly superior to monotherapy in its inhibition of biofilm formation. The highest inhibition rates were observed for combinations with colistin, cefepime and ceftazidime. CONCLUSION: Our results support fosfomycin combination therapy as an enhanced prophylactic option. Moreover, combinations with ß-lactam antibiotics and colistin demonstrated a more potent inhibition effect on biofilm formation than protein synthesis inhibitors.

19.
Microbiol Spectr ; 12(4): e0321223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411110

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE: The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.


Assuntos
Benzimidazóis , Ácidos Carboxílicos , Daptomicina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Daptomicina/farmacologia , Staphylococcus aureus , Cefalosporinas/farmacologia , Ceftarolina , Biofilmes , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
20.
Enferm Infecc Microbiol Clin ; 31(7): 442-7, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-23260384

RESUMO

OBJECTIVE: We recovered 22 coagulase-negative staphylococci isolates in our hospital to study their identity, susceptibility, epidemiological profile, linezolid resistance mechanisms, and the possibilities of different antibiotic combinations. METHODS: Isolate identification was performed using mass spectrometry (Vitek-MS, bioMérieux). Susceptibility testing was carried out with the Vitek-2 system and the broth microdilution method according to CLSI guidelines. Pulsed-field gel electrophoresis (PFGE) was performed to analyze the genetic relationship between isolates. Linezolid resistance mechanisms were evaluated by PCR/sequencing: presence of cfr gene, point mutations in domain V of 23S ribosomal RNA and additional ribosomal mutations (in the rplC, rplD and rplV genes). The in vitro activity of linezolid was investigated alone and in combination with another three antibiotics acting on different cellular targets, using E-test strips. RESULTS: Twenty isolates were identified as Staphylococcus epidermidis, and 2 as Staphylococcus hominis. PFGE showed that isolates belonged to diverse clones, 21 of them presented mutations in the domain V region of 23S rRNA and the cfr gene was found in 54.5%. Prior administration of linezolid was documented in most of cases. Linezolid in combination with gentamicin showed a synergistic activity in 45.5% of isolates. CONCLUSIONS: Staphylococcus epidermidis was the most prevalent linezolid-resistant coagulase-negative staphylococci. All isolates showed increased MIC values compared to other anti-staphylococcal drugs and several linezolid resistance mechanisms. Our data suggest that linezolid plus gentamicin could be a synergistic combination against linezolid-resistant coagulase-negative staphylococci.


Assuntos
Acetamidas/farmacologia , Anti-Infecciosos/farmacologia , Oxazolidinonas/farmacologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Coagulase , Farmacorresistência Bacteriana/genética , Genótipo , Humanos , Linezolida , Testes de Sensibilidade Microbiana , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa