Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206740

RESUMO

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Canais de Cálcio , Proteínas de Ligação ao Cálcio/genética , Dissulfetos/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Espécies Reativas de Oxigênio/metabolismo
2.
Mol Cell ; 81(18): 3708-3730, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547235

RESUMO

Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Doenças Metabólicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Cromatina/metabolismo , Doença , Metabolismo Energético/fisiologia , Saúde , Homeostase/fisiologia , Humanos , Imunidade/fisiologia , Lipidômica/métodos , Lipídeos/fisiologia , Doenças Metabólicas/fisiopatologia , Metabolômica/métodos , Microbiota/fisiologia
3.
Genes Dev ; 35(3-4): 199-211, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526586

RESUMO

Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.


Assuntos
Dieta , Células-Tronco/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Jejum/fisiologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Células-Tronco/microbiologia , Células-Tronco/parasitologia , Estresse Fisiológico/fisiologia
4.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846317

RESUMO

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/enzimologia , Glicerídeos/biossíntese , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipogênese , Células 3T3 , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Camundongos , Ácido Palmítico/toxicidade , Ligação Proteica
5.
Bioessays ; 46(6): e2300218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616332

RESUMO

Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.


Assuntos
Lipoilação , Metionina , Mitocôndrias , Metionina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Humanos , Animais , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Adaptação Fisiológica
6.
J Virol ; 98(3): e0175123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319105

RESUMO

Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE: Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.


Assuntos
Proteínas Quinases Ativadas por AMP , Vírus da Febre Suína Clássica , Mitofagia , Piruvato Quinase , Serina-Treonina Quinases TOR , Proteínas não Estruturais Virais , Replicação Viral , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antivirais , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Vírus da Febre Suína Clássica/fisiologia , Desenho de Fármacos , Glicólise , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Piruvatos/metabolismo , Transdução de Sinais , Suínos/metabolismo , Suínos/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
7.
Trends Immunol ; 43(6): 438-448, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550875

RESUMO

α-Fetoprotein (AFP) is a fetal glycoprotein produced by most human hepatocellular carcinoma tumors. Research has focused on its immunosuppressive properties in pregnancy, autoimmunity, and cancer, and human AFP directly limits the viability and functionality of human natural killer (NK) cells, monocytes, and dendritic cells (DCs). AFP-altered DCs can promote the differentiation of naïve T cells into regulatory T cells. These properties may work to shield tumors from the immune system. Recent efforts to define the molecular characteristics of AFP identified key structural immunoregulatory domains and bioactive roles of AFP-bound ligands in immunomodulation. We propose that a key mechanism of AFP immunomodulation skews DC function through cellular metabolism. Delineating differences between fetal 'normal' AFP (nAFP) and tumor-derived AFP (tAFP) has uncovered a novel role for tAFP in altering metabolism via lipid-binding partners.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Células Dendríticas , Feminino , Humanos , Imunomodulação , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Gravidez , alfa-Fetoproteínas/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(45): e2211142119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322771

RESUMO

Ultradian rhythms in metabolism and physiology have been described previously in mammals. However, the underlying mechanisms for these rhythms are still elusive. Here, we report the discovery of temperature-sensitive ultradian rhythms in mammalian fibroblasts that are independent of both the cell cycle and the circadian clock. The period in each culture is stable over time but varies in different cultures (ranging from 3 to 24 h). We show that transient, single-cell metabolic pulses are synchronized into stable ultradian rhythms across contacting cells in culture by gap junction-mediated coupling. Coordinated rhythms are also apparent for other metabolic and physiological measures, including plasma membrane potential (Δψp), intracellular glutamine, α-ketoglutarate, intracellular adenosine triphosphate (ATP), cytosolic pH, and intracellular calcium. Moreover, these ultradian rhythms require extracellular glutamine, several different ion channels, and the suppression of mitochondrial ATP synthase by α-ketoglutarate, which provides a key feedback mechanism. We hypothesize that cellular coupling and metabolic feedback can be used by cells to balance energy demands for survival.


Assuntos
Relógios Circadianos , Ritmo Ultradiano , Animais , Ácidos Cetoglutáricos , Glutamina , Ciclo Celular , Ritmo Circadiano/fisiologia , Mamíferos
9.
Br J Haematol ; 204(1): 45-55, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049194

RESUMO

Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.


Assuntos
Doenças da Medula Óssea , Anemia de Fanconi , Neutropenia , Adulto , Humanos , Doenças da Medula Óssea/genética , Anemia de Fanconi/genética , Medula Óssea/patologia , Transtornos da Insuficiência da Medula Óssea , Neutropenia/patologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte de Monossacarídeos , Antiporters
10.
Eur J Immunol ; 53(12): e2350536, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724936

RESUMO

Viral infections can result in metabolism rewiring of host cells, which in turn affects the viral lifecycle. Phosphoenolpyruvate (PEP), a metabolic intermediate in the glycolytic pathway, plays important roles in several biological processes including anti-tumor T cell immunity. However, whether PEP might participate in modulating viral infection remains largely unknown. Here, we demonstrate that PEP generally inhibits viral replication via upregulation of apoptosis-associated tyrosine kinase (AATK) expression. Targeted metabolomic analyses have shown that the intracellular level of PEP was increased upon viral infection. PEP treatment significantly restricted viral infection and hence declined subsequent inflammatory response both in vitro and in vivo. Besides, PEP took inhibitory effect on the stage of viral replication and also decreased the mortality of mice with viral infection. Mechanistically, PEP significantly promoted the expression of AATK. Knockdown of AATK led to enhanced viral replication and consequent increased levels of cytokines. Moreover, AATK deficiency disabled the antiviral effect of PEP. Together, our study reveals a previously unknown role of PEP in broadly inhibiting viral replication by promoting AATK expression, highlighting the potential application of activation or upregulation of the PEP-AATK axis in controlling viral infections.


Assuntos
Glicólise , Viroses , Camundongos , Animais , Fosfoenolpiruvato/farmacologia
11.
Small ; : e2401703, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210661

RESUMO

This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO2 heterojunction is introduced with the help of atomic layer deposition (ALD). The heterojunction reduces the charge carrier recombination inside the semiconductor nanoparticles and improves the drift behavior. The PEC performance is carefully analyzed by adjusting the TiO2 thickness and combining this strategy with multilayer immobilizations of QDs. The optimal thickness of this coating is ≈5 nm; here, photocurrent generation can be enhanced significantly (e.g., for a single QD layer electrode by more than one order of magnitude at 0 V vs Ag/AgCl). The resulting optimized electrode is used for hydrogen peroxide (H2O2) sensing with a good sensitivity down to µmolar concentrations, reusability, stability, response rate, and repeatability. Finally, the sensing system is applied to monitor the activity of cells directly grown on top of the electrode surface.

12.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840117

RESUMO

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

13.
Arch Biochem Biophys ; 756: 110021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697344

RESUMO

The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.


Assuntos
Metabolismo Energético , Fermentação , Frutose , Glucose , Glicólise , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Via de Pentose Fosfato
14.
Helicobacter ; 29(1): e13031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37997013

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are spontaneously released by Gram-negative bacteria and influence bacteria-host interactions by acting as a delivery system for bacterial components and by interacting directly with host cells. Helicobacter pylori, a pathogenic bacterium that chronically colonizes the human stomach, also sheds OMVs, and their impact on bacterial-mediated diseases is still being elucidated. MATERIALS AND METHODS: Transcriptomic profiling of the human gastric cell line MKN74 upon challenge with H. pylori OMVs compared to control and infected cells was performed using the Ion AmpliSeq™ Transcriptome Human Gene Expression Panel to understand the gene expression changes that human gastric epithelial cells might undergo when exposed to H. pylori OMVs. RESULTS: H. pylori OMVs per se modify the gene expression profile of gastric epithelial cells, adding another layer of (gene) regulation to the already complex host-bacteria interaction. The most enriched pathways include those related to amino acid metabolism, mitogen-activated protein kinase signaling, autophagy, and ferroptosis, whereas the cell cycle, DNA replication, and DNA repair were the most downregulated. The transcriptomic changes induced by OMVs were mostly similar to those induced by the parental bacteria, likely amplifying the effects of the bacterium itself. CONCLUSIONS: Our data provide a valuable portrayal of the transcriptomic remodeling of gastric cells induced by H. pylori OMVs. It demonstrates the breadth of cellular pathways and genes affected by OMVs, most previously unreported, which can be further dissected for the underlying molecular mediators and explored to understand the pathobiology of the full spectrum of H. pylori-mediated diseases.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiologia , Transcriptoma , Infecções por Helicobacter/microbiologia , Estômago , Perfilação da Expressão Gênica
15.
J Bone Miner Metab ; 42(1): 17-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062272

RESUMO

INTRODUCTION: The bone tissue is susceptible to hypergravity (+ G) environment. It is necessary to discuss the extent to which specific + G values are beneficial or detrimental to bone tissue. The objective of this study was to characterize the effects of high + G values on mechanical properties, microstructures, and cellular metabolism of bone. MATERIALS AND METHODS: 30 male Wistar rats aged 12 weeks were randomly divided into 5 groups, and bore different + G (namely + 1G, + 4G, + 8G, + 10G and + 12G) environments respectively for 4 weeks, 5 days each week, and 3 minutes each day. The macro-mechanical parameters, microstructure parameters, and mRNA transcription levels of the tibia were determined through the three-point bending method, micro-CT detection, and q-PCR analysis, respectively. RESULTS: As the + G value increases, hypergravity becomes increasingly detrimental to the macro-mechanical performance of rat tibia. Concerning the microstructure of cancellous bone, there appears to be a favorable trend at + 4G, followed by a progressively detrimental trend at higher G values. In addition, the mRNA transcription levels of OPG and RANKL show an initial tendency of enhanced bone absorption at +4G, followed by an increase in bone remodeling capacity as G value increases. CONCLUSION: The higher G values correspond to poorer macro-mechanical properties of the tibia, and a + 4G environment benefits the microstructure of the tibia. At the cellular level, bone resorption is enhanced in the + 4G group, but the bone remodeling capability gradually increases with further increments in G values.


Assuntos
Hipergravidade , Tíbia , Ratos , Masculino , Animais , Ratos Wistar , Remodelação Óssea , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Densidade Óssea
16.
Cell Mol Life Sci ; 80(10): 302, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747543

RESUMO

Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l-/- ESCs maintained major pluripotency characteristics. However, Dnm1l-/- ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l-/- ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l-/- ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.


Assuntos
Ciclo Celular , Dinaminas , Glicólise , Células-Tronco Embrionárias Murinas , Células-Tronco Pluripotentes , Animais , Camundongos , Diferenciação Celular/genética , Divisão Celular , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Dinaminas/genética , Dinaminas/fisiologia , Deleção de Genes , Glicólise/genética
17.
Mol Cell Proteomics ; 21(8): 100255, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688384

RESUMO

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Acetilação , Humanos , Lisina , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteoma , Sirtuína 2
18.
Drug Dev Res ; 85(1): e22129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961833

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.


Assuntos
Osteossarcoma , Tropolona , Humanos , Tropolona/farmacologia , Ferro/metabolismo , Ferro/farmacologia , Apoptose , Linhagem Celular , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral
19.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203763

RESUMO

Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.


Assuntos
Depressores do Sistema Nervoso Central , Deficiência de Vitamina B 12 , Humanos , Vitamina B 12 , Modelos Biológicos , Biotina , Sistema Nervoso
20.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612882

RESUMO

Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and autophagy, which makes them potential therapy targets in oncology. In the human genome, four vault RNA paralogues can be distinguished. They are associated with vault complexes, considered the largest ribonucleoprotein complexes. The protein part of these complexes consists of a major vault protein (MVP) and two minor vault proteins (vPARP and TEP1). The name of the complex, as well as vault RNA, comes from the hollow barrel-shaped structure that resembles a vault. Their sequence and structure are highly evolutionarily conserved and show many similarities in comparison with different species, but vault RNAs have various roles. Vaults were discovered in 1986, and their functions remained unclear for many years. Although not much is known about their contribution to cell metabolism, it has become clear that vault RNAs are involved in various processes and pathways associated with cancer progression and modulating cell functioning in normal and pathological stages. In this review, we discuss known functions of human vault RNAs in the context of cellular metabolism, emphasizing processes related to cancer and cancer therapy efficacy.


Assuntos
Carcinogênese , Genoma Humano , Humanos , Transformação Celular Neoplásica , Apoptose , RNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa