RESUMO
A common feature among nearly all gram-negative bacteria is the requirement for lipopolysaccharide (LPS) in the outer leaflet of the outer membrane. LPS provides structural integrity to the bacterial membrane, which aids bacteria in maintaining their shape and acts as a barrier from environmental stress and harmful substances such as detergents and antibiotics. Recent work has demonstrated that Caulobacter crescentus can survive without LPS due to the presence of the anionic sphingolipid ceramide-phosphoglycerate (CPG). Based on genetic evidence, we predicted that protein CpgB functions as a ceramide kinase and performs the first step in generating the phosphoglycerate head group. Here, we characterized the kinase activity of recombinantly expressed CpgB and demonstrated that it can phosphorylate ceramide to form ceramide 1-phosphate. The pH optimum for CpgB was 7.5, and the enzyme required Mg2+ as a cofactor. Mn2+, but no other divalent cations, could substitute for Mg2+. Under these conditions, the enzyme exhibited typical Michaelis-Menten kinetics with respect to NBD C6-ceramide (Km,app = 19.2 ± 5.5 µM; Vmax,app = 2590 ± 230 pmol/min/mg enzyme) and ATP (Km,app = 0.29 ± 0.07 mM; Vmax,app = 10,100 ± 996 pmol/min/mg enzyme). Phylogenetic analysis of CpgB revealed that CpgB belongs to a new class of ceramide kinases, which is distinct from its eukaryotic counterpart; furthermore, the pharmacological inhibitor of human ceramide kinase (NVP-231) had no effect on CpgB. The characterization of a new bacterial ceramide kinase opens avenues for understanding the structure and function of the various microbial phosphorylated sphingolipids.
Assuntos
Caulobacter crescentus , Ceramidas , Humanos , Caulobacter crescentus/enzimologia , Ceramidas/metabolismo , Lipopolissacarídeos , Filogenia , Esfingolipídeos/metabolismoRESUMO
Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase A2α (cPLA2α). To elucidate the structure-activity relationship of the affinity of C1P for cPLA2α in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLA2α on the amide, 3-OH and phosphate groups in C1P structure. Especially, dihydro-C1P exhibited enhanced affinity for cPLA2α, suggesting the hydrogen bonding ability of 3-hydroxy group is important for interactions with cPLA2α. This study helps to understand the influence of specific structural moieties of C1P on the interaction with cPLA2α at the atomistic level and may lead to the design of drugs that regulate cPLA2α activation.
Assuntos
Ceramidas , Desenho de Fármacos , Ressonância de Plasmônio de Superfície , Ceramidas/química , Ceramidas/síntese química , Ceramidas/metabolismo , Relação Estrutura-Atividade , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Humanos , Estrutura Molecular , Sítios de LigaçãoRESUMO
The (patho)physiological function of the sphingolipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) in articular joints during osteoarthritis (OA) is largely unknown. Therefore, we investigated the influence of these lipids on protein expression by fibroblast-like synoviocytes (FLSs) from OA knees. Cultured human FLSs (n = 7) were treated with 1 of 3 lipid species-C1P, S1P, or SPC-IL-1ß, or with vehicle. The expression of individual proteins was determined by tandem mass tag peptide labeling followed by high-resolution electrospray ionization (ESI) mass spectrometry after liquid chromatographic separation (LC-MS/MS/MS). The mRNA levels of selected proteins were analyzed using RT-PCR. The 3sphingolipids were quantified in the SF of 18 OA patients using LC-MS/MS. A total of 4930 proteins were determined using multiplex MS, of which 136, 9, 1, and 0 were regulated both reproducibly and significantly by IL-1ß, C1P, S1P, and SPC, respectively. In the presence of IL-1ß, all 3 sphingolipids exerted ancillary effects. Only low SF levels of C1P and SPC were found. In conclusion, the 3 lipid species regulated proteins that have not been described in OA. Our results indicate that charged multivesicular body protein 1b, metal cation symporter ZIP14, glutamine-fructose-6-P transaminase, metallothionein-1F and -2A, ferritin, and prosaposin are particularly interesting proteins due to their potential to affect inflammatory, anabolic, catabolic, and apoptotic mechanisms.
Assuntos
Ceramidas , Fibroblastos , Lisofosfolipídeos , Proteômica , Esfingosina , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteômica/métodos , Fibroblastos/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Feminino , Células Cultivadas , Masculino , Idoso , Interleucina-1beta/metabolismo , Espectrometria de Massas em Tandem , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/genética , Fosforilcolina/análogos & derivadosRESUMO
Neural membranes are composed of phospholipids, sphingolipids, cholesterol, and proteins. In response to cell stimulation or injury, the metabolism of lipids generates various lipid mediators, which perform many cellular functions. Thus, phospholipids release arachidonic acid or docosahexaenoic acid from the sn-2 position of the glycerol moiety by the action of phospholipases A2. Arachidonic acid is a precursor for prostaglandins, leukotrienes, thromboxane, and lipoxins. Among these mediators, prostaglandins, leukotrienes, and thromboxane produce neuroinflammation. In contrast, lipoxins produce anti-inflammatory and pro-resolving effects. Prostaglandins, leukotrienes, and thromboxane are also involved in cell proliferation, differentiation, blood clotting, and blood vessel permeability. In contrast, DHA-derived lipid mediators are called specialized pro-resolving lipid metabolites (SPMs). They include resolvins, protectins, and maresins. These mediators regulate immune function by producing anti-inflammatory, pro-resolving, and cell protective effects. Sphingolipid-derived metabolites are ceramide, ceramide1-phosphate, sphingosine, and sphingosine 1 phosphate. They regulate many cellular processes, including enzyme activities, cell migration and adhesion, inflammation, and immunity. Cholesterol is metabolized into hydroxycholesterols and 7-ketocholesterol, which not only disrupts membrane fluidity, but also promotes inflammation, oxidative stress, and apoptosis. These processes lead to cellular damage.
Assuntos
Colesterol , Doenças do Sistema Nervoso , Fosfolipídeos , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Animais , Fosfolipídeos/metabolismo , Colesterol/metabolismo , Doenças do Sistema Nervoso/metabolismo , Metabolismo dos LipídeosRESUMO
Psoriasis is a chronic immune-mediated inflammatory disease. Lipids play an important role in regulating the inflammatory response. However, the alteration of lipids involved in psoriasis particular in skin lesions remain unclear. Here, we performed the lipidomics to investigate lipid profiling in the skin lesions of the imiquimod-induced psoriasis-like dermatitis and psoriasis patients. The findings showed that ceramides phosphate (CerP) and ceramides were enriched in psoriatic lesions compared with controls from both psoriasis patients and psoriasis-like mouse model. Psoriasis patients were classified into two subtypes, the CC1 and CC2, by consensus clustering of these lipid signatures. The CC1 was characterized by the higher levels of CerP, uric acid, and more severe psoriasis, compared with CC2 subtype. Interestingly, ceramide-1-phosphate (C1P), dramatically enriched in CC1 subtype, facilitated imiquimod-induced psoriasis-like inflammatory responses. Mechanistically, C1P induced the expression of inflammatory factors and activated DNA replication and cell cycle signaling pathways in the primary keratinocytes. Inhibiting the production of C1P with ceramide kinase inhibitor effectively alleviated the imiquimod-induced psoriasis-like inflammation. Taken together, we described the landscape of lipids alteration and established lipids classification based on pattern of abundance of lipids in psoriatic skin lesions. Suppression of C1P pathway is a novel potential strategy for psoriasis treatment.
Assuntos
Lipidômica , Psoríase , Animais , Camundongos , Imiquimode/farmacologia , Pele/patologia , Psoríase/tratamento farmacológico , Queratinócitos , Inflamação/patologia , Ceramidas/efeitos adversos , Lipídeos/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB CRESUMO
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.
Assuntos
Ceramidas , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Ácidos Araquidônicos , Movimento Celular , Ceramidas/metabolismo , Eicosanoides , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cicatrização/genéticaRESUMO
Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown. Herein, we report insights gained from molecular dynamics (MD) simulations into the conformational dynamics that enable ceramide-1-phosphate transfer proteins (CPTPs) to acquire and deliver ceramide-1-phosphate (C1P) during interaction with 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. The focus on CPTP reflects this protein's involvement in regulating pro-inflammatory eicosanoid production and autophagy-dependent inflammasome assembly that drives interleukin (IL-1ß and IL-18) production and release by surveillance cells. We found that membrane penetration by CPTP involved α-6 helix and the α-2 helix N-terminal region, was confined to one bilayer leaflet, and was relatively shallow. Large-scale dynamic conformational changes were minimal for CPTP during membrane interaction or C1P uptake except for the α-3/α-4 helices connecting loop, which is located near the membrane interface and interacts with certain phosphoinositide headgroups. Apart from functioning as a shallow membrane-docking element, α-6 helix was found to adeptly reorient membrane lipids to help guide C1P hydrocarbon chain insertion into the interior hydrophobic pocket of the SL binding site.These findings support a proposed 'hydrocarbon chain-first' mechanism for C1P uptake, in contrast to the 'lipid polar headgroup-first' uptake used by most lipid-transfer proteins.
Assuntos
Proteínas de Transferência de FosfolipídeosRESUMO
Ceramide-1-phosphate transfer proteins (CPTPs) are members of the glycolipid transfer protein (GLTP) superfamily that shuttle ceramide-1-phosphate (C1P) between membranes. CPTPs regulate cellular sphingolipid homeostasis in ways that impact programmed cell death and inflammation. CPTP downregulation specifically alters C1P levels in the plasma and trans-Golgi membranes, stimulating proinflammatory eicosanoid production and autophagy-dependent inflammasome-mediated cytokine release. However, the mechanisms used by CPTP to target the trans-Golgi and plasma membrane are not well understood. Here, we monitored C1P intervesicular transfer using fluorescence energy transfer (FRET) and showed that certain phosphoinositides (phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P2) and phosphatidylinositol 4-phosphate (PI-4P)) increased CPTP transfer activity, whereas others (phosphatidylinositol 3-phosphate (PI-3P) and PI) did not. PIPs that stimulated CPTP did not stimulate GLTP, another superfamily member. Short-chain PI-(4,5)P2, which is soluble and does not remain membrane-embedded, failed to activate CPTP. CPTP stimulation by physiologically relevant PI-(4,5)P2 levels surpassed that of phosphatidylserine (PS), the only known non-PIP stimulator of CPTP, despite PI-(4,5)P2 increasing membrane equilibrium binding affinity less effectively than PS. Functional mapping of mutations that led to altered FRET lipid transfer and assessment of CPTP membrane interaction by surface plasmon resonance indicated that di-arginine motifs located in the α-6 helix and the α3-α4 helix regulatory loop of the membrane-interaction region serve as PI-(4,5)P2 headgroup-specific interaction sites. Haddock modeling revealed specific interactions involving the PI-(4,5)P2 headgroup that left the acyl chains oriented favorably for membrane embedding. We propose that PI-(4,5)P2 interaction sites enhance CPTP activity by serving as preferred membrane targeting/docking sites that favorably orient the protein for function.
Assuntos
Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Homeostase , Humanos , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica em alfa-HéliceRESUMO
Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.
RESUMO
Retinal pigment epithelium (RPE) cells, essential for preserving retina homeostasis, also contribute to the development of retina proliferative diseases, through their exacerbated migration, epithelial to mesenchymal transition (EMT) and inflammatory response. Uncovering the mechanisms inducing these changes is crucial for designing effective treatments for these pathologies. Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are bioactive sphingolipids that promote migration and inflammation in several cell types; we recently established that they stimulate the migration of retina Müller glial cells (Simón et al., 2015; Vera et al., 2021). We here analyzed whether S1P and C1P regulate migration, inflammation and EMT in RPE cells. We cultured two human RPE cell lines, ARPE-19 and D407 cells, and supplemented them with either 5 µM S1P or 10 µM C1P, or their vehicles, for 24 h. Analysis of cell migration by the scratch wound assay showed that S1P addition significantly enhanced migration in both cell lines. Pre-treatment with W146 and BML-241, antagonists for S1P receptor 1 (S1P1) and 3 (S1P3), respectively, blocked exogenous S1P-induced migration. Inhibiting sphingosine kinase 1 (SphK1), the enzyme involved in S1P synthesis, significantly reduced cell migration and exogenous S1P only partially restored it. Addition of C1P markedly stimulated cell migration. Whereas inhibiting C1P synthesis did not affect C1P-induced migration, inhibiting S1P synthesis strikingly decreased it; noteworthy, addition of C1P promoted the transcription of SphK1. These results suggest that S1P and C1P stimulate RPE cell migration and their effect requires S1P endogenous synthesis. Both S1P and C1P increase the transcription of pro-inflammatory cytokines IL-6 and IL-8, and of EMT marker α-smooth muscle actin (α-SMA) in ARPE-19 cells. Collectively, our results suggest new roles for S1P and C1P in the regulation of RPE cell migration and inflammation; since the deregulation of sphingolipid metabolism is involved in several proliferative retinopathies, targeting their metabolism might provide new tools for treating these pathologies.
Assuntos
Actinas , Epitélio Pigmentado da Retina , Humanos , Receptores de Esfingosina-1-Fosfato , Epitélio Pigmentado da Retina/metabolismo , Transição Epitelial-Mesenquimal , Interleucina-6 , Interleucina-8 , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina/farmacologia , Esfingosina/metabolismo , Ceramidas/farmacologia , Ceramidas/metabolismo , Inflamação/metabolismo , FosfatosRESUMO
Ceramide, a central molecule of sphingolipid metabolism, is phosphorylated to ceramide-1-phosphate (C1P) by ceramide kinase (CerK). The CerK/C1P pathway regulates many cellular functions, but its roles in immune/inflammation-related (IIR) diseases in vivo are not well known. Sepsis is an acute systemic inflammatory disease accompanied by damage/dysfunction in multiple organs. In the present study, we investigated the effects of CerK knockout on the onset/progression of sepsis-related events in lipopolysaccharide (LPS)-treated sepsis-model mice. In CerK-null mice, the lethality at 48 h after i.v. injection of LPS was significantly increased compared with that in wild-type (WT) mice. The increased lethality by CerK knockout was reproduced in mice treated with i.p. injections of LPS. Changes in serum levels of 23 IIR molecules, including cytokines and chemokines, were measured. In WT mice, levels of these molecules increased 4 and/or 20 h after i.v. injection of LPS. Although the basal levels of IIR molecules were not affected, LPS-induced increases in interleukin-17 (IL-17), C-C motif chemokine ligands (CCL-2 and CCL-11), and tumor necrosis factor-α were significantly up-regulated, whereas IL-2 levels were slightly down-regulated by CerK knockout. Putative mechanisms for the CerK/C1P pathway-mediated regulation of IIR molecules and increased lethality in LPS-treated mice are discussed.
Assuntos
Lipopolissacarídeos , Sepse , Animais , Ceramidas/metabolismo , Quimiocinas , Citocinas , Deleção de Genes , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sepse/genéticaRESUMO
The retrograde flow of endometrial tissues deposited into the peritoneal cavity occurs in women during menstruation. Classically (M1) or alternatively (M2) activated macrophages partake in the removal of regurgitated menstrual tissue. The failure of macrophage egress from the peritoneal cavity through the mesothelium leads to chronic inflammation in endometriosis. To study the migration differences of macrophage phenotypes across mesothelial cells, an in vitro model of macrophage egress across a peritoneal mesothelial cell monolayer membrane was developed. M1 macrophages were more sessile, emigrating 2.9-fold less than M2 macrophages. The M1 macrophages displayed a pro-inflammatory cytokine signature, including IL-1α, IL-1ß, TNF-α, TNF-ß, and IL-12p70. Mass spectrometry sphingolipidomics revealed decreased levels of ceramide-1-phosphate (C1P), an inducer of migration in M1 macrophages, which correlated with its poor migration behavior. C1P is generated by ceramide kinase (CERK) from ceramide, and blocking C1P synthesis via the action of NVP231, a specific CERK chemical inhibitor, prohibited the emigration of M1 and M2 macrophages up to 6.7-fold. Incubation with exogenously added C1P rescued this effect. These results suggest that M1 macrophages are less mobile and have higher retention in the peritoneum due to lower C1P levels, which contributes to an altered peritoneal environment in endometriosis by generating a predominant pro-inflammatory cytokine environment.
Assuntos
Endometriose , Humanos , Feminino , Endometriose/metabolismo , Macrófagos/metabolismo , Ceramidas/metabolismo , Epitélio/metabolismo , Interleucina-12/metabolismoRESUMO
Both intrinsic (i.e., an individual's body clock) and extrinsic factors (i.e., air pollutants and ultraviolet irradiation) accelerate premature aging. Epidemiological studies have shown a correlation between pollutant levels and aging skin symptoms. Diesel particle matter in particular leads to some diseases, including in the skin. Our recent study demonstrates that diesel particulate extract (DPE) increases apoptosis via increases in an anti-mitogenic/pro-apoptotic lipid mediator, ceramide in epidermal keratinocytes. Here, we investigated whether and how DPE accelerates premature skin aging using cultured normal human dermal fibroblasts (HDF). We first demonstrated that DPE increases cell senescence marker ß-galactosidase activity in HDF. We then found increases in mRNA and protein levels, along with activity of matrix metalloprotease (MMP)-1 and MMP-3, which are associated with skin aging following DPE exposure. We confirmed increases in collagen degradation in HDF treated with DPE. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is activated by DPE and results in increased ceramide production by sphingomyelinase activation in HDF. We identified that ceramide-1-phosphate (C1P) (produced from ceramide by ceramide kinase activation) activates MMP-1 and MMP-3 through activation of arachidonate cascade, followed by STAT 1- and STAT 3-dependent transcriptional activation.
Assuntos
Senilidade Prematura , Envelhecimento da Pele , Senilidade Prematura/metabolismo , Células Cultivadas , Ceramidas/metabolismo , Fibroblastos/metabolismo , Humanos , Metaloproteinase 3 da Matriz/metabolismo , NADPH Oxidases/metabolismo , Fosfatos/metabolismo , Extratos Vegetais/metabolismo , Transdução de Sinais , Pele/metabolismo , Raios Ultravioleta/efeitos adversosRESUMO
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Assuntos
EsfingolipídeosRESUMO
Adaptation to local environments involves evolution of ecologically important traits and underlying physiological processes. Here, we used low coverage whole-genome resequencing (lcWGR) on individuals to identify genome regions involved in thermal adaptation in wild redband trout Oncorhynchus mykiss gairdneri, a subspecies of rainbow trout that inhabits ecosystems ranging from cold montane forests to high elevation deserts. This study includes allele frequency-based analyses for selective sweeps among populations, followed by multiple association tests for specific sets of phenotypes measured under thermal stress (acute and chronic survival/mortality; high or low cardiac performance groups). Depending on the groups in each set of analyses, sequencing reads covered 43%-75% of the genome at ≥15× and each analysis included millions of SNPs across the genome. In tests for selective sweeps among populations, a total of six chromosomal regions were significant. The further association tests for specific phenotypes revealed that the region on chromosome 4 was consistently the most significant and contains the cerk gene (ceramide kinase). This study provides insight into a potential genetic mechanism of local thermal adaptation and suggests cerk may be an important candidate gene. However, further validation of this cerk gene is necessary to determine if the association with cardiac performance results in a functional role to influence thermal performance when exposed to high water temperatures and hypoxic conditions.
Assuntos
Oncorhynchus mykiss , Aclimatação/genética , Animais , Ecossistema , Genoma/genética , Genômica , Oncorhynchus mykiss/genéticaRESUMO
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Ceramidas/uso terapêutico , Humanos , Inflamação , Neoplasias/tratamento farmacológico , EsfingolipídeosRESUMO
Multiple sclerosis (MS) is a CNS disease characterized by immune-mediated demyelination and progressive axonal loss. MS-related CNS damage and its clinical course have two main phases: active and inactive/progressive. Reliable biomarkers are being sought to allow identification of MS pathomechanisms and prediction of its course. The purpose of this study was to identify sphingolipid (SL) species as candidate biomarkers of inflammatory and neurodegenerative processes underlying MS pathology. We performed sphingolipidomic analysis by HPLC-tandem mass spectrometry to determine the lipid profiles in post mortem specimens from the normal-appearing white matter (NAWM) of the normal CNS (nCNS) from subjects with chronic MS (active and inactive lesions) as well as from patients with other neurological diseases. Distinctive SL modification patterns occurred in specimens from MS patients with chronic inactive plaques with respect to NAWM from the nCNS and active MS (Ac-MS) lesions. Chronic inactive MS (In-MS) lesions were characterized by decreased levels of dihydroceramide (dhCer), ceramide (Cer), and SM subspecies, whereas levels of hexosylceramide and Cer 1-phosphate (C1P) subspecies were significantly increased in comparison to NAWM of the nCNS as well as Ac-MS plaques. In contrast, Ac-MS lesions were characterized by a significant increase of major dhCer subspecies in comparison to NAWM of the nCNS. These results suggest the existence of different SL metabolic pathways in the active versus inactive phase within progressive stages of MS. Moreover, they suggest that C1P could be a new biomarker of the In-MS progressive phase, and its detection may help to develop future prognostic and therapeutic strategies for the disease.
Assuntos
Esclerose Múltipla/metabolismo , Esfingolipídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico , Esfingolipídeos/análiseRESUMO
Sphingosine kinases (SphKs) and ceramide kinase (CerK) phosphorylate sphingosine to sphingosine-1-phosphate (S1P) and ceramide to ceramide-1-phosphate (C1P), respectively. S1P and C1P are bioactive lipids that regulate cell fate/function and human health/diseases. The translocation and activity of SphK1 are regulated by its phosphorylation of Ser 225 and by anionic lipids such as phosphatidic acid and phosphatidylserine. However, the roles of another anionic lipid C1P on SphK1 functions have not yet been elucidated, thus, we here investigated the regulation of SphK1 by CerK/C1P. C1P concentration dependently bound with and activated recombinant human SphK1. The inhibition of CerK reduced the phorbol 12-myristate 13-acetate-induced translocation of SphK1 to the plasma membrane (PM) and activation of the enzyme in membrane fractions of cells. A treatment with C1P translocated wild-type SphK1, but not the SphK1-S225A mutant, to the PM without affecting phosphorylation signaling. A cationic RxRH sequence is proposed to be a C1P-binding motif in α-type cytosolic phospholipase A 2 and tumor necrosis factor α-converting enzyme. The mutation of four cationic amino acids to Ala in the 56-RRNHAR-61 domain in SphK1 reduced the phorbol 12-myristate 13-acetate- and C1P-induced translocation of SphK1 to the PM, however, the capacity of C1P to bind with and activate SphK1 was not affected by this mutation. In conclusion, C1P modulates SphK1 functions by interacting with multiple sites in SphK1.
Assuntos
Ceramidas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Aminoácidos/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Ceramidas/metabolismo , Citosol/metabolismo , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Mutação/genética , Fosfolipases A2/genética , Fosforilação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Transdução de Sinais/genética , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/genéticaRESUMO
Diabetic kidney disease (DKD) affects â¼40% of patients with diabetes and is associated with high mortality rates. Among different cellular targets in DKD, podocytes, highly specialized epithelial cells of the glomerular filtration barrier, are injured in the early stages of DKD. Both clinical and experimental data support the role of preserved insulin signaling as a major contributor to podocyte function and survival. However, little is known about the key modulators of podocyte insulin signaling. This review summarizes the novel knowledge that intracellular lipids such as cholesterol and sphingolipids are major determinants of podocyte insulin signaling. In particular, the implications of these lipids on DKD development, progression, and treatment will be addressed.
Assuntos
Nefropatias Diabéticas/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais/fisiologia , Humanos , Podócitos/fisiologiaRESUMO
We showed previously that ceramide kinase (CerK) expression increases during adipogenesis pointing to a relevant role of intracellular C1P in this process. In the present work we demonstrate that administration of exogenous C1P inhibits the differentiation of 3T3-L1 pre-adipocytes into mature adipocytes through a mechanism involving activation of extracellularly regulated kinases (ERK) 1-2. Exogenous C1P reduced the accumulation of lipid droplets and the content of triacylglycerol in these cells, and potently inhibited the expression of the early and late adipogenic markers C/EBPß and PPARγ, respectively. C1P also reduced the secretion of leptin, which is a crucial regulator of energy balance and appetite in the organism, and is considered to be a late marker of adipogenesis. Interestingly, all of these C1P actions were reversed by pertussis toxin, suggesting the intervention of a Gi protein-coupled receptor previously identified for C1P, in this process. Also, exogenous C1P significantly reduced CerK activity. Altogether, the data presented in this work suggest that exogenous C1P may balance adipogenesis, and that targeting CerK may be a novel way for potential applications in the treatment of obesity or other inflammation-associated diseases.