Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Nano Lett ; 24(15): 4498-4504, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587933

RESUMO

Dimensionality of materials is closely related to their physical properties. For two-dimensional (2D) semiconductors such as monolayer molybdenum disulfide (MoS2), converting them from 2D nanosheets to one-dimensional (1D) nanoscrolls could contribute to remarkable electronic and optoelectronic properties, yet the rolling-up process still lacks sufficient controllability, which limits the development of their device applications. Herein we report a modified solvent evaporation-induced rolling process that halts at intermediate states and achieve MoS2 nanoscrolls with high yield and decent axial uniformity. The accordingly fabricated nanoscroll memories exhibit an on/off ratio of ∼104 and a retention time exceeding 103 s and can realize multilevel storage with pulsed gate voltages. Such open-end, high-curvature, and hollow 1D nanostructures provide new possibilities to manipulate the hysteresis windows and, consequently, the charge storage characteristics of nanoscale field-effect transistors, thereby holding great promise for the development of miniaturized memories.

2.
Nanotechnology ; 35(2)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816338

RESUMO

Phototransistor using 2D semiconductor as the channel material has shown promising potential for high sensitivity photo detection. The high photoresponsivity is often attributed to the photogating effect, where photo excited holes are trapped at the gate dielectric interface that provides additional gate electric field to enhance channel charge carrier density. Gate dielectric material and its deposition processing conditions can have great effect on the interface states. Here, we use HfO2gate dielectric with proper thermal annealing to demonstrate a high photoresponsivity MoS2phototransistor. When HfO2is annealed in H2atmosphere, the photoresponsivity is enhanced by an order of magnitude as compared with that of a phototransistor using HfO2without annealing or annealed in Ar atmosphere. The enhancement is attributed to the hole trapping states introduced at HfO2interface through H2annealing process, which greatly enhances photogating effect. The phototransistor exhibits a very large photoresponsivity of 1.1 × 107A W-1and photogain of 3.3 × 107under low light illumination intensity. This study provides a processing technique to fabricate highly sensitive phototransistor for low optical power detection.

3.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850862

RESUMO

Hysteresis in organic field-effect transistors is attributed to the well-known bias stress effects. This is a phenomenon in which the measured drain-source current varies when sweeping the gate voltage from on to off or from off to on. Hysteresis is caused by various factors, and one of the most common is charge trapping. A charge trap is a defect that occurs in an interface state or part of a semiconductor, and it refers to an electronic state that appears distributed in the semiconductor's energy band gap. Extensive research has been conducted recently on obtaining a better understanding of charge traps for hysteresis. However, it is still difficult to accurately measure or characterize them, and their effects on the hysteresis of organic transistors remain largely unknown. In this study, we conduct a literature survey on the hysteresis caused by charge traps from various perspectives. We first analyze the driving principle of organic transistors and introduce various types of hysteresis. Subsequently, we analyze charge traps and determine their influence on hysteresis. In particular, we analyze various estimation models for the traps and the dynamics of the hysteresis generated through these traps. Lastly, we conclude this study by explaining the causal inference approach, which is a machine learning technique typically used for current data analysis, and its implementation for the quantitative analysis of the causal relationship between the hysteresis and the traps.

4.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203601

RESUMO

The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic-hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.


Assuntos
Antifibrinolíticos , Ciona , Animais , Prótons , Aminoácidos , Arginina
5.
Angew Chem Int Ed Engl ; 62(22): e202303335, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36964955

RESUMO

Two wide-band gap U-shaped polycyclic aromatic hydrocarbons with/without boron and nitrogen (BN-) doping (BN-1 and C-1) were synthesized to tune the electronic features to suit the performance requirements for organic field-effect transistor memory (OFET-NVM). The chemical structures were characterized by scanning tunneling microscopy and single-crystal diffraction. Owing to the electron-donor effect of N and the high electron affinity of B, the BN-1-based OFET-NVM displays large ambipolar memory windows and an enhanced charge storage density compared to C-1 and most reported small molecules. A novel supramolecular system formed from BN-1 and PMMA contributes to fabricating uniform films with homogeneous microstructures, which serve as a two-in-one tunnelling dielectric and charge-trapping layer to realize long-term charge retention and reliable endurance. Our results demonstrate that both BN doping and supramolecular engineering are crucial for the charge trapping of OFET-NVM.

6.
Nanotechnology ; 33(6)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736234

RESUMO

Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.

7.
Nanotechnology ; 32(37)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34098542

RESUMO

For a given three different Si doping concentrations at room and high temperatures, the threshold voltage shift (ΔVth) on silicon-doped hafnium-oxide-based ferroelectric field effect transistor (FeFET) is experimentally investigated. It turned out that charge trapping in the gate stack of FeFET (versus polarization switching in the gate stack of FeFET) adversely affects ΔVth. Charge trapping causes the positive ΔVth, while polarization switching causes the negative ΔVth. The dominance of polarization switching is predominantly determined by the total remnant polarization (2Pr), which can be controlled by adjusting Si doping concentration in the hafnium-oxide layer. As the Si doping concentration increases from 2.5% to 3.6%, and 5.0%, 2Prdecreases 19.8µC cm-2to 15.25µC cm-2, and 12.5µC cm-2, which leads to ΔVthof -0.8 V, -0.09 V, and +0.1 V, respectively, at room temperature. At high temperature, the effect of polarization switching is degraded due to the decreasedPr, while the effect of charge trapping is very independent of temperature. For those three different Si doping concentrations (i.e. 2.5%, 3.6%, and 5.0%), at the high temperature, ΔVthof FeFET is -0.675 V, -0.075 V, and +0.15 V, respectively. This experimental work should provide an insight for designing FeFET for memory and logic applications.

8.
Angew Chem Int Ed Engl ; 60(38): 20811-20816, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34288316

RESUMO

Artificial photosynthesis of alcohols from CO2 is still unsatisfactory owing to the rapid charge relaxation compared to the sluggish photoreactions and the oxidation of alcohol products. Here, we demonstrate that CO2 is reduced to methanol with 100 % selectivity using water as the only electron donor on a carbon nitride-like polymer (FAT) decorated with carbon dots. The quantum efficiency of 5.9 % (λ=420 nm) is 300 % higher than the previously reported carbon nitride junction. Using transient absorption spectroscopy, we observed that holes in FAT could be extracted by the carbon dots with nearly 75 % efficiency before they become unreactive by trapping. Extraction of holes resulted in a greater density of photoelectrons, indicative of reduced recombination of shorter-lived reactive electrons. This work offers a strategy to promote photocatalysis by increasing the amount of reactive photogenerated charges via structure engineering and extraction before energy losses by deep trapping.

9.
Small ; 16(2): e1905726, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31823510

RESUMO

Charge trapping is a long-standing problem in electrowetting on dielectric, causing reliability reduction and restricting its practical applications. Although this phenomenon is investigated macroscopically, the microscopic investigations are still lacking. In this work, the trapped charges are proven to be localized at the three-phase contact line (TPCL) region by using three detecting methods-local contact angle measurements, electrowetting (EW) probe, and Kelvin probe force microscopy. Moreover, it is demonstrated that this EW-assisted charge injection (EWCI) process can be utilized as a simple and low-cost method to deposit charges on fluoropolymer surfaces. Charge densities near the TPCL up to 0.46 mC m-2 and line widths of the deposited charge ranging from 20 to 300 µm are achieved by the proposed EWCI method. Particularly, negative charge densities do not degrade even after a "harsh" testing with a water droplet on top of the sample surfaces for 12 h, as well as after being treated by water vapor for 3 h. These findings provide an approach for applications which desire stable and controllable surface charges.

10.
Angew Chem Int Ed Engl ; 59(32): 13347-13353, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32337808

RESUMO

The perovskite CH3 NH3 PbI3 excited-state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron-hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid-gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity.

11.
Small ; 15(7): e1805431, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30653280

RESUMO

It is desirable to imitate synaptic functionality to break through the memory wall in traditional von Neumann architecture. Modulating heterosynaptic plasticity between pre- and postneurons by another modulatory interneuron ensures the computing system to display more complicated functions. Optoelectronic devices facilitate the inspiration for high-performance artificial heterosynaptic systems. Nevertheless, the utilization of near-infrared (NIR) irradiation to act as a modulatory terminal for heterosynaptic plasticity emulation has not yet been realized. Here, an NIR resistive random access memory (RRAM) is reported, based on quasiplane MoSe2 /Bi2 Se3 heterostructure in which the anomalous NIR threshold switching and NIR reset operation are realized. Furthermore, it is shown that such an NIR irradiation can be employed as a modulatory terminal to emulate heterosynaptic plasticity. The reconfigurable 2D image recognition is also demonstrated by an RRAM crossbar array. NIR annihilation effect in quasiplane MoSe2 /Bi2 Se3 nanosheets may open a path toward optical-modulated in-memory computing and artificial retinal prostheses.

12.
Small ; 15(1): e1804156, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30480357

RESUMO

A nonvolatile memory with a floating gate structure is fabricated using ZnSe@ZnS core-shell quantum dots as discrete charge-trapping/tunneling centers. Systematical investigation reveals that the spontaneous recovery of the trapped charges in the ZnSe core can be effectively avoided by the type-I energy band structure of the quantum dots. The surface oleic acid ligand surrounding the quantum dots can also play a role of energy barrier to prevent unintentional charge recovery. The device based on the quantum dots demonstrates a large memory window, stable retention, and good endurance. What is more, integrating charge-trapping and tunneling components into one quantum dot, which is solution synthesizable and processible, can largely simplify the processing of the floating gate nonvolatile memory. This research reveals the promising application potential of type-I core-shell nanoparticles as the discrete charge-trapping/tunneling centers in nonvolatile memory in terms of performance, cost, and flexibility.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31080381

RESUMO

There is an increasing number of reports on polar polymer-based Ferroelectric Field Effect Transistors (FeFETs), where the hysteresis of the drain current - gate voltage (Id-Vg) curve is investigated as the result of the ferroelectric polarization effect. However, separating ferroelectric effect from many of the factors (such as charge injection/trapping and the presence of mobile ions in the polymer) that confound interpretation is still confusing and controversial. This work presents a methodology to reliably identify the confounding factors which obscure the polarization effect in FeFETs. Careful observation of the Id-Vg curves, as well as monitoring the Id-Vg hysteresis and flat band voltage shift as a function of temperature and sweep frequency identifies the dominant mechanism. This methodology is demonstrated using 15-nm thick high glass transition temperature polar polymer-based FeFETs. In these devices, room temperature hysteresis is largely a consequence of charge trapping and mobile ions, while ferroelectric polarization is observed at elevated temperatures. This methodology can be used to unambiguously prove the effect of ferroelectric polarization in FeFETs.

14.
Adv Funct Mater ; 3(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230154

RESUMO

Organic field-effect transistor (OFET) performance is dictated by its composition and geometry, as well as the quality of the organic semiconductor (OSC) film, which strongly depends on purity and microstructure. When present, impurities and defects give rise to trap states in the bandgap of the OSC, lowering device performance. Here, 2,8-difluoro-5,11-bis(triethylsilylethynyl)-anthradithiophene is used as a model system to study the mechanism responsible for performance degradation in OFETs due to isomer coexistence. The density of trapping states is evaluated through temperature dependent current-voltage measurements, and it is discovered that OFETs containing a mixture of syn- and anti-isomers exhibit a discrete trapping state detected as a peak located at ~ 0.4 eV above the valence-band edge, which is absent in the samples fabricated on single-isomer films. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations do not point to a significant difference in electronic band structure between individual isomers. Instead, it is proposed that the dipole moment of the syn-isomer present in the host crystal of the anti-isomer locally polarizes the neighboring molecules, inducing energetic disorder. The isomers can be separated by applying gentle mechanical vibrations during film crystallization, as confirmed by the suppression of the peak and improvement in device performance.

15.
Nano Lett ; 15(3): 1603-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25706329

RESUMO

Fluorescence super-resolution microscopy showed correlated fluctuations of photoluminescence intensity and spatial localization of individual perovskite (CH3NH3PbI3) nanocrystals of size ∼200 × 30 × 30 nm(3). The photoluminescence blinking amplitude caused by a single quencher was a hundred thousand times larger than that of a typical dye molecule at the same excitation power density. The quencher is proposed to be a chemical or structural defect that traps free charges leading to nonradiative recombination. These trapping sites can be activated and deactivated by light.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/efeitos da radiação , Cristalização/métodos , Medições Luminescentes/métodos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Óxidos/química , Óxidos/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Absorção de Radiação , Luz , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula
16.
Nano Lett ; 15(7): 4657-63, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26099508

RESUMO

Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors.

17.
Nano Lett ; 14(9): 5437-44, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25134063

RESUMO

The interface between graphene and the ferroelectric superlattice PbTiO3/SrTiO3 (PTO/STO) is studied. Tuning the transition temperature through the PTO/STO volume fraction minimizes the adorbates at the graphene/ferroelectric interface, allowing robust ferroelectric hysteresis to be demonstrated. "Intrinsic" charge traps from the ferroelectric surface defects can adversely affect the graphene channel hysteresis and can be controlled by careful sample processing, enabling systematic study of the charge trapping mechanism.

18.
Nano Lett ; 14(11): 6190-4, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25299928

RESUMO

Wafer-scale fabrication of semiconductor nanowire devices is readily facilitated by lithography-based top-down fabrication of polysilicon nanowire (P-SiNW) arrays. However, free carrier trapping at the grain boundaries of polycrystalline materials drastically changes their properties. We present here transport measurements of P-SiNW array devices coupled with Kelvin probe force microscopy at different applied biases. By fitting the measured P-SiNW surface potential using electrostatic simulations, we extract the longitudinal dopant distribution along the nanowires as well as the density of grain boundaries interface states and their energy distribution within the band gap.

19.
Angew Chem Int Ed Engl ; 53(18): 4714-6, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24677419

RESUMO

A combination of photoemission, atomic force, and scanning tunneling microscopy/spectroscopy measurements shows that excess electrons in the TiO2 anatase (101) surface are trapped at step edges. Consequently, steps act as preferred adsorption sites for O2 . In density functional theory calculations electrons localize at clean step edges, this tendency is enhanced by O vacancies and hydroxylation. The results show the importance of defects for the wide-ranging applications of titania.

20.
Nanomaterials (Basel) ; 14(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921914

RESUMO

Crystalline calcium fluoride (CaF2) is drawing significant attention due to its great potential of being the gate dielectric of two-dimensional (2D) material MOSFETs. It is deemed to be superior to boron nitride and traditional silicon dioxide (SiO2) because of its larger dielectric constant, wider band gap, and lower defect density. Nevertheless, the CaF2-based MOSFETs fabricated in the experiment still present notable reliability issues, and the underlying reason remains unclear. Here, we studied the various intrinsic defects and adsorbates in CaF2/molybdenum disulfide (MoS2) and CaF2/molybdenum disilicon tetranitride (MoSi2N4) interface systems to reveal the most active charge-trapping centers in CaF2-based 2D material MOSFETs. An elaborate Table comparing the importance of different defects in both n-type and p-type devices is provided. Most impressively, the oxygen molecules (O2) adsorbed at the interface or surface, which are inevitable in experiments, are as active as the intrinsic defects in channel materials, and they can even change the MoSi2N4 to p-type spontaneously. These results mean that it is necessary to develop a high-vacuum packaging process, as well as prepare high-quality 2D materials for better device performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa