Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.492
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181737

RESUMO

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Assuntos
Genes Ligados ao Cromossomo X , RNA Longo não Codificante , Cromossomo X , Animais , Feminino , Humanos , Masculino , Camundongos , Inativação Gênica , RNA Longo não Codificante/genética , Cromossomo X/genética , Células-Tronco Pluripotentes/metabolismo
2.
Cell ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37385248

RESUMO

Certain cancer types afflict female and male patients disproportionately. The reasons include differences in male/female physiology, effect of sex hormones, risk behavior, environmental exposures, and genetics of the sex chromosomes X and Y. Loss of Y (LOY) is common in peripheral blood cells in aging men, and this phenomenon is associated with several diseases. However, the frequency and role of LOY in tumors is little understood. Here, we present a comprehensive catalog of LOY in >5,000 primary tumors from male patients in the TCGA. We show that LOY rates vary by tumor type and provide evidence for LOY being either a passenger or driver event depending on context. LOY in uveal melanoma specifically is associated with age and survival and is an independent predictor of poor outcome. LOY creates common dependencies on DDX3X and EIF1AX in male cell lines, suggesting that LOY generates unique vulnerabilities that could be therapeutically exploited.

3.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075754

RESUMO

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Assuntos
Centrômero , Técnicas Genéticas , Humanos , Aneuploidia , Centrômero/genética , Deleção Cromossômica , Neoplasias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
4.
Cell ; 186(4): 837-849.e11, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36693376

RESUMO

Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.


Assuntos
Cromátides , Proteínas de Saccharomyces cerevisiae , Cromátides/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Acetiltransferases/genética , Acetiltransferases/metabolismo
5.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868220

RESUMO

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Assuntos
Euphausiacea , Genoma , Animais , Relógios Circadianos/genética , Ecossistema , Euphausiacea/genética , Euphausiacea/fisiologia , Genômica , Análise de Sequência de DNA , Elementos de DNA Transponíveis , Evolução Biológica , Adaptação Fisiológica
6.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794590

RESUMO

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Assuntos
Sistemas CRISPR-Cas , Aberrações Cromossômicas , Edição de Genes , Linfócitos T , Humanos , Cromossomos , Sistemas CRISPR-Cas/genética , Dano ao DNA , Edição de Genes/métodos , Ensaios Clínicos como Assunto
7.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944511

RESUMO

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Sequência de Bases , Cromossomos/genética , Saccharomyces cerevisiae/genética , Biologia Sintética
8.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944512

RESUMO

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilação da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Biologia Sintética , RNA de Transferência/genética , Cromossomos Artificiais de Levedura/genética
9.
Cell ; 185(1): 204-217.e14, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34965378

RESUMO

Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.


Assuntos
Epigenoma , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pinus/genética , Aclimatação/genética , Cromossomos de Plantas/genética , Cycadopsida/genética , Elementos de DNA Transponíveis/genética , Florestas , Redes Reguladoras de Genes , Tamanho do Genoma , Genômica/métodos , Íntrons , Magnoliopsida/genética
10.
Cell ; 185(12): 2164-2183.e25, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597241

RESUMO

X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.


Assuntos
Complexo Mediador/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Diferenciação Celular , Epigênese Genética , Humanos , RNA Longo não Codificante/genética , Inativação do Cromossomo X
11.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35858625

RESUMO

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Assuntos
Quebra Cromossômica , Segregação de Cromossomos , Aneuploidia , Animais , DNA , Replicação do DNA , Desenvolvimento Embrionário/genética , Humanos , Mamíferos/genética
12.
Cell ; 184(14): 3626-3642.e14, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186018

RESUMO

All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.


Assuntos
Cromossomos Bacterianos/química , Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Solventes/química , Transcrição Gênica , Aminoglicosídeos/farmacologia , Simulação por Computador , DNA Bacteriano/química , Difusão , Escherichia coli/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Tamanho da Partícula , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Transcrição Gênica/efeitos dos fármacos
13.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33964210

RESUMO

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Aneuploidia , Animais , Bovinos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Segregação de Cromossomos/fisiologia , Cromossomos/metabolismo , Fertilização/genética , Humanos , Masculino , Microtúbulos/metabolismo , Mitose , Oócitos/metabolismo , Espermatozoides/metabolismo , Zigoto/metabolismo
14.
Cell ; 184(16): 4251-4267.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34260899

RESUMO

Genetic recombination generates novel trait combinations, and understanding how recombination is distributed across the genome is key to modern genetics. The PRDM9 protein defines recombination hotspots; however, megabase-scale recombination patterning is independent of PRDM9. The single round of DNA replication, which precedes recombination in meiosis, may establish these patterns; therefore, we devised an approach to study meiotic replication that includes robust and sensitive mapping of replication origins. We find that meiotic DNA replication is distinct; reduced origin firing slows replication in meiosis, and a distinctive replication pattern in human males underlies the subtelomeric increase in recombination. We detected a robust correlation between replication and both contemporary and historical recombination and found that replication origin density coupled with chromosome size determines the recombination potential of individual chromosomes. Our findings and methods have implications for understanding the mechanisms underlying DNA replication, genetic recombination, and the landscape of mammalian germline variation.


Assuntos
Células Germinativas/citologia , Recombinação Homóloga , Meiose , Animais , Composição de Bases/genética , Cromossomos de Mamíferos/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Genoma , Células Germinativas/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Camundongos , Origem de Replicação , Fase S , Telômero/metabolismo , Testículo/citologia
15.
Cell ; 184(7): 1790-1803.e17, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735607

RESUMO

The long non-coding RNA (lncRNA) XIST establishes X chromosome inactivation (XCI) in female cells in early development and thereafter is thought to be largely dispensable. Here, we show XIST is continually required in adult human B cells to silence a subset of X-linked immune genes such as TLR7. XIST-dependent genes lack promoter DNA methylation and require continual XIST-dependent histone deacetylation. XIST RNA-directed proteomics and CRISPRi screen reveal distinctive somatic cell-type-specific XIST complexes and identify TRIM28 that mediates Pol II pausing at promoters of X-linked genes in B cells. Single-cell transcriptome data of female patients with either systemic lupus erythematosus or COVID-19 infection revealed XIST dysregulation, reflected by escape of XIST-dependent genes, in CD11c+ atypical memory B cells (ABCs). XIST inactivation with TLR7 agonism suffices to promote isotype-switched ABCs. These results indicate cell-type-specific diversification and function for lncRNA-protein complexes and suggest expanded roles for XIST in sex-differences in biology and medicine.


Assuntos
Linfócitos B/imunologia , COVID-19 , Lúpus Eritematoso Sistêmico , RNA Longo não Codificante/fisiologia , Receptor 7 Toll-Like/imunologia , Inativação do Cromossomo X , COVID-19/genética , COVID-19/imunologia , Linhagem Celular , Metilação de DNA , Feminino , Inativação Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia
16.
Cell ; 184(25): 6157-6173.e24, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34856126

RESUMO

Chromosome loops shift dynamically during development, homeostasis, and disease. CCCTC-binding factor (CTCF) is known to anchor loops and construct 3D genomes, but how anchor sites are selected is not yet understood. Here, we unveil Jpx RNA as a determinant of anchor selectivity. Jpx RNA targets thousands of genomic sites, preferentially binding promoters of active genes. Depleting Jpx RNA causes ectopic CTCF binding, massive shifts in chromosome looping, and downregulation of >700 Jpx target genes. Without Jpx, thousands of lost loops are replaced by de novo loops anchored by ectopic CTCF sites. Although Jpx controls CTCF binding on a genome-wide basis, it acts selectively at the subset of developmentally sensitive CTCF sites. Specifically, Jpx targets low-affinity CTCF motifs and displaces CTCF protein through competitive inhibition. We conclude that Jpx acts as a CTCF release factor and shapes the 3D genome by regulating anchor site usage.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromossomos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células-Tronco Embrionárias , Camundongos , Ligação Proteica
17.
Cell ; 184(25): 6174-6192.e32, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34813726

RESUMO

The lncRNA Xist forms ∼50 diffraction-limited foci to transcriptionally silence one X chromosome. How this small number of RNA foci and interacting proteins regulate a much larger number of X-linked genes is unknown. We show that Xist foci are locally confined, contain ∼2 RNA molecules, and nucleate supramolecular complexes (SMACs) that include many copies of the critical silencing protein SPEN. Aggregation and exchange of SMAC proteins generate local protein gradients that regulate broad, proximal chromatin regions. Partitioning of numerous SPEN molecules into SMACs is mediated by their intrinsically disordered regions and essential for transcriptional repression. Polycomb deposition via SMACs induces chromatin compaction and the increase in SMACs density around genes, which propagates silencing across the X chromosome. Our findings introduce a mechanism for functional nuclear compartmentalization whereby crowding of transcriptional and architectural regulators enables the silencing of many target genes by few RNA molecules.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Longo não Codificante/metabolismo , Cromossomo X/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias , Fibroblastos , Inativação Gênica , Humanos , Camundongos , Ligação Proteica , Inativação do Cromossomo X
18.
Annu Rev Biochem ; 89: 255-282, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32259458

RESUMO

Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Heterocromatina/metabolismo , Proteínas do Grupo Polycomb/genética , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Feminino , Inativação Gênica , Heterocromatina/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espermatozoides/citologia , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Cromossomo X/química
19.
Cell ; 180(4): 703-716.e18, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059782

RESUMO

The three-dimensional structures of chromosomes are increasingly being recognized as playing a major role in cellular regulatory states. The efficiency and promiscuity of phage Mu transposition was exploited to directly measure in vivo interactions between genomic loci in E. coli. Two global organizing principles have emerged: first, the chromosome is well-mixed and uncompartmentalized, with transpositions occurring freely between all measured loci; second, several gene families/regions show "clustering": strong three-dimensional co-localization regardless of linear genomic distance. The activities of the SMC/condensin protein MukB and nucleoid-compacting protein subunit HU-α are essential for the well-mixed state; HU-α is also needed for clustering of 6/7 ribosomal RNA-encoding loci. The data are explained by a model in which the chromosomal structure is driven by dynamic competition between DNA replication and chromosomal relaxation, providing a foundation for determining how region-specific properties contribute to both chromosomal structure and gene regulation.


Assuntos
Bacteriófago mu/genética , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/química , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Conformação de Ácido Nucleico , Transposases/genética , Transposases/metabolismo
20.
Cell ; 182(6): 1641-1659.e26, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32822575

RESUMO

The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Linhagem Celular , Núcleo Celular/genética , Cromatina/genética , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Genômica , Humanos , Processamento de Imagem Assistida por Computador , Conformação Molecular , Imagem Multimodal , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , RNA/genética , RNA/metabolismo , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa