Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37609950

RESUMO

Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface, the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be accessed via this link (https://rosie.graylab.jhu.edu).


Assuntos
Proteínas , Software , Proteínas/química , Navegador
2.
Proteomics ; 24(12-13): e2200436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438732

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.


Assuntos
Algoritmos , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Software , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Metabolômica/métodos , Humanos
3.
Anal Bioanal Chem ; 416(2): 559-568, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040943

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS) separates gas phase ions due to differences in drift time from which reproducible and analyte-specific collision cross section (CCS) values can be derived. Internally conducted in vitro and in vivo metabolism (biotransformation) studies indicated repetitive shifts in measured CCS values (CCSmeas) between parent drugs and their metabolites. Hence, the purpose of the present article was (i) to investigate if such relative shifts in CCSmeas were biotransformation-specific and (ii) to highlight their potential benefits for biotransformation studies. First, mean CCSmeas values of 165 compounds were determined (up to n = 3) using a travelling wave IMS-MS device with nitrogen as drift gas (TWCCSN2, meas). Further comparison with their predicted values (TWCCSN2, pred, Waters CCSonDemand) resulted in a mean absolute error of 5.1%. Second, a reduced data set (n = 139) was utilized to create compound pairs (n = 86) covering eight common types of phase I and II biotransformations. Constant, discriminative, and almost non-overlapping relative shifts in mean TWCCSN2, meas were obtained for demethylation (- 6.5 ± 2.1 Å2), oxygenation (hydroxylation + 3.8 ± 1.4 Å2, N-oxidation + 3.4 ± 3.3 Å2), acetylation (+ 13.5 ± 1.9 Å2), sulfation (+ 17.9 ± 4.4 Å2), glucuronidation (N-linked: + 41.7 ± 7.5 Å2, O-linked: + 38.1 ± 8.9 Å2), and glutathione conjugation (+ 49.2 ± 13.2 Å2). Consequently, we propose to consider such relative shifts in TWCCSN2, meas (rather than absolute values) as well for metabolite assignment/confirmation complementing the conventional approach to associate changes in mass-to-charge (m/z) values between a parent drug and its metabolite(s). Moreover, the comparison of relative shifts in TWCCSN2, meas significantly simplifies the mapping of metabolites into metabolic pathways as demonstrated.


Assuntos
Cisteamina , Nitrogênio , Espectrometria de Massas/métodos , Biotransformação
4.
Anal Bioanal Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814344

RESUMO

The importance of lipids in biology continues to grow with their recent linkages to more diseases and conditions, microbiome fluctuations, and environmental exposures. These associations have motivated researchers to evaluate lipidomic changes in numerous matrices and studies. Lipidomic analyses, however, present numerous challenges as lipid species have broad chemistries that require different extraction methods and instrumental analyses to evaluate and separate their many isomers and isobars. Increasing knowledge about different lipid characteristics is therefore crucial for improving their separation and identification. Here, we present a multidimensional database for lipids analyzed on a platform combining reversed-phase liquid chromatography, drift tube ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (RPLC-DTIMS-CID-MS). This platform and the different separation characteristics it provides enables more confident lipid annotations when compared to traditional tandem mass spectrometry platforms, especially when analyzing highly isomeric molecules such as lipids. This database expands on our previous publication containing only human plasma and bronchoalveolar lavage fluid lipids and provides experimental RPLC retention times, IMS collision cross section (CCS) values, and m/z information for 877 unique lipids from additional biofluids and tissues. Specifically, the database contains 1504 precursor [M + H]+, [M + NH4]+, [M + Na]+, [M-H]-, [M-2H]2-, [M + HCOO]-, and [M + CH3COO]- ion species and their associated CID fragments which are commonly targeted in clinical and environmental studies, in addition to being present in the chloroform layer of Folch extractions. Furthermore, this multidimensional RPLC-DTIMS-CID-MS database spans 5 lipid categories (fatty acids, sterols, sphingolipids, glycerolipids, and glycerophospholipids) and 24 lipid classes. We have also created a webpage (tarheels.live/bakerlab/databases/) to enhance the accessibility of this resource which will be populated regularly with new lipids as we identify additional species and integrate novel standards.

5.
Mass Spectrom Rev ; 41(5): 722-765, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33522625

RESUMO

Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.


Assuntos
Espectrometria de Mobilidade Iônica , Lipidômica , Espectrometria de Mobilidade Iônica/métodos , Lipídeos/análise , Espectrometria de Massas/métodos , Metabolômica/métodos
6.
Environ Sci Technol ; 57(51): 21485-21502, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091506

RESUMO

Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis. An up-to-date CCS compendium for environmental contaminants was produced by combining CCS databases and data sets of particular types of environmental OMPs, including pesticides, drugs, mycotoxins, steroids, plastic additives, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), as well as their well-known transformation products. A total of 9407 experimental CCS values from 4170 OMPs were retrieved from 23 publications, which contain both drift tube CCS in nitrogen (DTCCSN2) and traveling wave CCS in nitrogen (TWCCSN2). A selection of publicly accessible and in-house CCS prediction tools were also investigated; the chemical space covered by the training set and the quality of CCS measurements seem to be vital factors affecting the CCS prediction accuracy. Then, the applications of IMS and the derived CCS in the screening of various OMPs were summarized, and the benefits of IMS and CCS, including increased peak capacity, the elimination of interfering ions, the separation of isomers, and the reduction of false positives and false negatives, were discussed in detail. With the improvement of the resolving power of IMS and enhancements of experimental CCS databases, the practicability of IMS in the analysis of environmental OMPs will continue to improve.


Assuntos
Espectrometria de Mobilidade Iônica , Nitrogênio , Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Íons/análise , Nitrogênio/química
7.
Anal Bioanal Chem ; 415(27): 6633-6645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758903

RESUMO

Recent advances have rekindled the interest in ion mobility as an additional dimension of separation in mass spectrometry (MS)-based proteomics. Ion mobility separates ions according to their size and shape in the gas phase. Here, we set out to investigate the effect of 22 different post-translational modifications (PTMs) on the collision cross section (CCS) of peptides. In total, we analyzed ~4300 pairs of matching modified and unmodified peptide ion species by trapped ion mobility spectrometry (TIMS). Linear alignment based on spike-in reference peptides resulted in highly reproducible CCS values with a median coefficient of variation of 0.26%. On a global level, we observed a redistribution in the m/z vs. ion mobility space for modified peptides upon changes in their charge state. Pairwise comparison between modified and unmodified peptides of the same charge state revealed median shifts in CCS between -1.4% (arginine citrullination) and +4.5% (O-GlcNAcylation). In general, increasing modified peptide masses were correlated with higher CCS values, in particular within homologous PTM series. However, investigating the ion populations in more detail, we found that the change in CCS can vary substantially for a given PTM and is partially correlated with the gas phase structure of its unmodified counterpart. In conclusion, our study shows PTM- and sequence-specific effects on the cross section of peptides, which could be further leveraged for proteome-wide PTM analysis.


Assuntos
Peptídeos , Proteômica , Peptídeos/química , Espectrometria de Massas/métodos , Proteoma , Processamento de Proteína Pós-Traducional , Íons/química
8.
J Sep Sci ; 46(19): e2300374, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37582648

RESUMO

A challenge in the quality control of traditional Chinese medicine is the systematic multicomponent characterization of the compound formulae. Jiawei Fangji Huangqi, a modified form of Fangji Huangqi, is a prescription comprising seven herbal medicines. To address the chemical complexity of the Jiawei Fangji Huangqi decoction, we integrated ion mobility-quadrupole time-of-flight high-definition MSE coupled to ultra-high-performance liquid chromatography and intelligent data processing workflows available in the UNIFI software package. Good chromatographic separation was achieved on CORTECS UPLC T3 column within 52 min, and high-accuracy MS2 data were acquired using high-definition MSE in the negative and positive modes. A chemical library of 1250 compounds was created and incorporated into the UNIFI software to enable automatic peak annotation of the high-definition MSE data. We identified or tentatively characterize 430 compounds in the Jiawei Fangji Huangqi decoction. The potential superiority of high-definition MSE over conventional MS data acquisition approaches was revealed in its spectral quality (MS2 ), differentiation of isomers, separation of coeluting compounds, and target mass coverage. The multiple components of the Jiawei Fangji Huangqi decoction were elucidated, offering insight into its improved pharmacological action compared with that of the Fangji Huangqi formula.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Fluxo de Trabalho , Espectrometria de Massas/métodos , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa
9.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241791

RESUMO

Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Espectrometria de Massas/métodos , Bases de Dados Factuais , Aprendizado de Máquina
10.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3294-3307, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37382014

RESUMO

A strategy combining collision cross section(CCS) prediction and quantitative structure-retention relationship(QSRR) model for quinoline and isoquinoline alkaloids was established based on UHPLC-IM-Q-TOF-MS and applied to Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex. The strategy included the following three steps.(1) The molecular features were extracted by the "find features" algorithm.(2) The potential quinoline and isoquinoline alkaloids were screened by filtering the original characteristic ions extracted from Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex by the established CCS vs m/z prediction interval.(3) According to the retention time of candidate compounds predicted by QSRR model, the chemical constituents were identified in combination with the characteristic fragment ions and pyrolysis law of secondary mass spectrometry. With the strategy, a total of 80 compounds were predicted, and 15 were identified accurately. The strategy is effective for the identification of small analogs of traditional Chinese medicine.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Phellodendron , Medicamentos de Ervas Chinesas/química , Espectrometria de Massa com Cromatografia Líquida , Phellodendron/química , Quinolinas/química , Quinolinas/isolamento & purificação , Alcaloides/química , Alcaloides/isolamento & purificação , Isoquinolinas/química , Isoquinolinas/isolamento & purificação
11.
J Proteome Res ; 21(10): 2481-2492, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36154058

RESUMO

The combination of ion mobility mass spectrometry (IM-MS) and chromatography is a valuable tool for identifying compounds in natural products. In this study, using an ultra-performance liquid chromatography system coupled to a high-resolution quadrupole/traveling wave ion mobility spectrometry/time-of-flight MS (UPLC-TWIMS-QTOF), we have established and validated a comprehensive TWCCSN2 and MS database for 112 plant specialized metabolites. The database included 15 compounds that were isolated and purified in-house and are not commercially available. We obtained accurate m/z, retention times, fragment ions, and TWIMS-derived CCS (TWCCSN2) values for 207 adducts (ESI+ and ESI-). The database included novel 158 TWCCSN2 values from 79 specialized metabolites. In the presence of plant matrix, the CCS measurement was reproducible and robust. Finally, we demonstrated the application of the database to extend the metabolite coverage of Ventilago harmandiana Pierre. In addition to pyranonaphthoquinones, a group of known specialized metabolites in V. harmandiana, we identified flavonoids, xanthone, naphthofuran, and protocatechuic acid for the first time through targeted analysis. Interestingly, further investigation using IM-MS of unknown features suggested the presence of organonitrogen compounds and lipid and lipid-like molecules, which is also reported for the first time. Data are available on the MassIVE (https://massive.ucsd.edu, data set identifier MSV000090213).


Assuntos
Produtos Biológicos , Rhamnaceae , Xantonas , Flavonoides , Íons/química , Lipídeos , Espectrometria de Massas/métodos
12.
Metabolomics ; 19(1): 4, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576608

RESUMO

INTRODUCTION: Feature annotation is crucial in untargeted metabolomics but remains a major challenge. The large pool of metabolites collected under various instrumental conditions is underrepresented in publicly available databases. Retention time (RT) and collision cross section (CCS) measurements from liquid chromatography ion mobility high-resolution mass spectrometers can be employed in addition to MS/MS spectra to improve the confidence of metabolite annotation. Recent advancements in machine learning focus on improving the accuracy of predictions for CCS and RT values. Therefore, high-quality experimental data are crucial to be used either as training datasets or as a reference for high-confidence matching. METHODS: This manuscript provides an easy-to-use workflow for the creation of an in-house metabolite library, offers an overview of alternative solutions, and discusses the challenges and advantages of using open-source software. A total of 100 metabolite standards from various classes were analyzed and subjected to the described workflow for library generation. RESULTS AND DISCUSSION: The outcome was an open-access available NIST format metabolite library (.msp) with multidimensional information. The library was used to evaluate CCS prediction tools, MS/MS spectra heterogeneities (e.g., multiple adducts, in-source fragmentation, radical fragment ions using collision-induced dissociation), and the reporting of RT.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Software , Confiabilidade dos Dados
13.
Metabolomics ; 18(12): 104, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472678

RESUMO

BACKGROUND: Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW: In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.


Assuntos
Metabolômica
14.
Environ Sci Technol ; 56(13): 9463-9473, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35730527

RESUMO

The use of ion mobility separation (IMS) in conjunction with high-resolution mass spectrometry has proved to be a reliable and useful technique for the characterization of small molecules from plastic products. Collision cross-section (CCS) values derived from IMS can be used as a structural descriptor to aid compound identification. One limitation of the application of IMS to the identification of chemicals from plastics is the lack of published empirical CCS values. As such, machine learning techniques can provide an alternative approach by generating predicted CCS values. Herein, experimental CCS values for over a thousand chemicals associated with plastics were collected from the literature and used to develop an accurate CCS prediction model for extractables and leachables from plastic products. The effect of different molecular descriptors and machine learning algorithms on the model performance were assessed. A support vector machine (SVM) model, based on Chemistry Development Kit (CDK) descriptors, provided the most accurate prediction with 93.3% of CCS values for [M + H]+ adducts and 95.0% of CCS values for [M + Na]+ adducts in testing sets predicted with <5% error. Median relative errors for the CCS values of the [M + H]+ and [M + Na]+ adducts were 1.42 and 1.76%, respectively. Subsequently, CCS values for the compounds in the Chemicals associated with Plastic Packaging Database and the Food Contact Chemicals Database were predicted using the SVM model developed herein. These values were integrated in our structural elucidation workflow and applied to the identification of plastic-related chemicals in river water. False positives were reduced, and the identification confidence level was improved by the incorporation of predicted CCS values in the suspect screening workflow.


Assuntos
Algoritmos , Espectrometria de Mobilidade Iônica , Bases de Dados Factuais , Espectrometria de Massas , Plásticos
15.
Anal Bioanal Chem ; 414(14): 4103-4118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35419692

RESUMO

Mass spectrometry-based plant metabolomics allow large-scale analysis of a wide range of compounds and the discovery of potential new active metabolites with minimal sample preparation. Despite recent tools for molecular networking, many metabolites remain unknown. Our objective is to show the complementarity of collision cross section (CCS) measurements and calculations for metabolite annotation in a real case study. Thus, a systematic and high-throughput investigation of root, bark, branch, and leaf of the Gabonese plant Zhanthoxylum heitzii was performed through ultra-high performance liquid chromatography high-resolution tandem mass spectrometry (UHPLC-QTOF/MS). A feature-based molecular network (FBMN) was employed to study the distribution of metabolites in the organs of the plants and discover potential new components. In total, 143 metabolites belonging to the family of alkaloids, lignans, polyphenols, fatty acids, and amino acids were detected and a semi-quantitative analysis in the different organs was performed. A large proportion of medical plant phytochemicals is often characterized by isomerism and, in the absence of reference compounds, an additional dimension of gas phase separation can result in improvements to both quantitation and compound annotation. The inclusion of ion mobility in the ultra-high performance liquid chromatography mass spectrometry workflow (UHPLC-IMS-MS) has been used to collect experimental CCS values in nitrogen and helium (CCSN2 and CCSHe) of Zhanthoxylum heitzii features. Due to a lack of reference data, the investigation of predicted collision cross section has enabled comparison with the experimental values, helping in dereplication and isomer identification. Moreover, in combination with mass spectra interpretation, the comparison of experimental and theoretical CCS values allowed annotation of unknown features. The study represents a practical example of the potential of modern mass spectrometry strategies in the identification of medicinal plant phytochemical components.


Assuntos
Metabolômica , Compostos Fitoquímicos , Extratos Vegetais , Rutaceae , Cromatografia Líquida de Alta Pressão/métodos , Isomerismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Plantas Medicinais/química , Rutaceae/química
16.
Int J Mass Spectrom ; 4792022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37577146

RESUMO

Characterization of phospholipid isomers is challenging due to their identical masses and similarities in structures. Here, we report that copper (I) ion complexed with phospholipids can be used to characterize both carbon-carbon double-bond (C=C bond) positional and geometric isomers. We investigate the distinct fragmentation patterns induced by the π-Cu+ interaction and developed strategies to rapidly characterize the isomerism of phospholipids. The multi-stage fragmentation of Cu+-adducted lipids by collision-induced dissociation can generate diagnostic ions to locate C=C bonds in unsaturated lipids. Furthermore, the collision cross sections of Cu+-adducted parent lipids and product ions can be used as molecular descriptors in distinguishing C=C bond geometric isomers. A bovine heart lipid extract containing Z-configuration lipids spiked with an E-configuration lipid was analyzed to demonstrate rapidness and effectiveness of the method in distinguishing lipid geometric isomers from a real sample.

17.
Mar Drugs ; 20(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135730

RESUMO

The hyphenation of ion mobility spectrometry with high-resolution mass spectrometry has been widely used in the characterization of various metabolites. Nevertheless, such a powerful tool remains largely unexplored in natural products research, possibly mainly due to the lack of available compounds. To evaluate the ability of collision cross-sections (CCSs) in characterizing compounds, especially isomeric natural products, here we measured and compared the traveling-wave IMS-derived nitrogen CCS values for 75 marine-derived aphidicolanes. We established a CCS database for these compounds which contained 227 CCS values of different adducts. When comparing the CCS differences, 36 of 57 pairs (over 60%) of chromatographically neighboring compounds showed a ΔCCS over 2%. What is more, 64 of 104 isomeric pairs (over 60%) of aphidicolanes can be distinguished by their CCS values, and 13 of 18 pairs (over 70%) of chromatographically indistinguishable isomers can be differentiated from the mobility dimension. Our results strongly supported CCS as an important parameter with good orthogonality and complementarity with retention time. CCS is expected to play an important role in distinguishing complex and diverse marine natural products.


Assuntos
Produtos Biológicos , Espectrometria de Mobilidade Iônica , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Espectrometria de Massas/métodos , Nitrogênio
18.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234961

RESUMO

High-resolution mass spectrometry is a promising technique in non-target screening (NTS) to monitor contaminants of emerging concern in complex samples. Current chemical identification strategies in NTS experiments typically depend on spectral libraries, chemical databases, and in silico fragmentation tools. However, small molecule identification remains challenging due to the lack of orthogonal sources of information (e.g., unique fragments). Collision cross section (CCS) values measured by ion mobility spectrometry (IMS) offer an additional identification dimension to increase the confidence level. Thanks to the advances in analytical instrumentation, an increasing application of IMS hybrid with high-resolution mass spectrometry (HRMS) in NTS has been reported in the recent decades. Several CCS prediction tools have been developed. However, limited CCS prediction methods were based on a large scale of chemical classes and cross-platform CCS measurements. We successfully developed two prediction models using a random forest machine learning algorithm. One of the approaches was based on chemicals' super classes; the other model was direct CCS prediction using molecular fingerprint. Over 13,324 CCS values from six different laboratories and PubChem using a variety of ion-mobility separation techniques were used for training and testing the models. The test accuracy for all the prediction models was over 0.85, and the median of relative residual was around 2.2%. The models can be applied to different IMS platforms to eliminate false positives in small molecule identification.


Assuntos
Espectrometria de Mobilidade Iônica , Bibliotecas de Moléculas Pequenas , Algoritmos , Aprendizado de Máquina , Espectrometria de Massas , Bibliotecas de Moléculas Pequenas/química
19.
J Proteome Res ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133192

RESUMO

The contribution of peptide amino acid sequence to collision cross section values (CCS) has been investigated using a dataset of ∼134 000 peptides of four different charge states (1+ to 4+). The migration data were acquired using a two-dimensional liquid chromatography (LC)/trapped ion mobility spectrometry/quadrupole/time-of-flight mass spectrometry (MS) analysis of HeLa cell digests created using seven different proteases and was converted to CCS values. Following the previously reported modeling approaches using intrinsic size parameters (ISP), we extended this methodology to encode the position of individual residues within a peptide sequence. A generalized prediction model was built by dividing the dataset into eight groups (four charges for both tryptic/nontryptic peptides). Position-dependent ISPs were independently optimized for the eight subsets of peptides, resulting in prediction accuracy of ∼0.981 for the entire population of peptides. We find that ion mobility is strongly affected by the peptide's ability to solvate the positively charged sites. Internal positioning of polar residues and proline leads to decreased CCS values as they improve charge solvation; conversely, this ability decreases with increasing peptide charge due to electrostatic repulsion. Furthermore, higher helical propensity and peptide hydrophobicity result in a preferential formation of extended structures with higher than predicted CCS values. Finally, acidic/basic residues exhibit position-dependent ISP behavior consistent with electrostatic interaction with the peptide macrodipole, which affects the peptide helicity. The MS raw data files have been deposited with the ProteomeXchange Consortium via the jPOST partner repository (http://jpostdb.org) with the dataset identifiers PXD021440/JPST000959, PXD022800/JPST001017, and PXD026087/ JPST001176.

20.
Anal Bioanal Chem ; 412(4): 819-832, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31919606

RESUMO

Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Mobilidade Iônica/métodos , Silybum marianum/química , Silimarina/análise , Flavonolignanos/análise , Flavonolignanos/isolamento & purificação , Isomerismo , Espectrometria de Massas/métodos , Silimarina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa