Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075223

RESUMO

A major challenge in treating cancer is posed by intratumor heterogeneity, with different sub-populations of cancer cells within the same tumor exhibiting therapy resistance through different biological processes. These include therapy-induced dormancy (durable proliferation arrest through, e.g., polyploidy, multinucleation, or senescence), apoptosis reversal (anastasis), and cell fusion. Unfortunately, such responses are often overlooked or misinterpreted as "death" in commonly used preclinical assays, including the in vitro colony-forming assay and multiwell plate "viability" or "cytotoxicity" assays. Although these assays predominantly determine the ability of a test agent to convert dangerous (proliferating) cancer cells to potentially even more dangerous (dormant) cancer cells, the results are often assumed to reflect loss of cancer cell viability (death). In this article we briefly discuss the dark sides of dormancy, apoptosis, and cell fusion in cancer therapy, and underscore the danger of relying on short-term preclinical assays that generate population-based data averaged over a large number of cells. Unveiling the molecular events that underlie intratumor heterogeneity together with more appropriate experimental design and data interpretation will hopefully lead to clinically relevant strategies for treating recurrent/metastatic disease, which remains a major global health issue despite extensive research over the past half century.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Heterogeneidade Genética , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/patologia
2.
J Therm Biol ; 78: 73-83, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509670

RESUMO

The therapeutic effect of polyglycerol coated iron oxide nanoparticles (PG-SPIONs, non-targeted nanoparticles) and folic acid-conjugated polyglycerol coated iron oxide nanoparticles (FA-PG-SPIONs, targeted nanoparticles) in combination with hyperthermia on viability of HeLa cells was investigated. It was observed that coated and uncoated SPIONs have spherical shapes with an average diameter of 17.9 ±â€¯2.85 nm and 5.4 ±â€¯0.75 nm, respectively. The penetration rate for cells treated with targeted nanoparticles was shown to be more than that of non-targeted nanoparticles. Moreover, it was revealed that the treatment of cells with ≥ 50 µg/ml FA-PG-SPIONs in combination with hyperthermia induced cytotoxicity in comparison to control cells. The results also showed that increasing the concentrations of targeted nanoparticles (FA-PG-SPIONs) and heating time would increase the value of thermal enhancement factor (TEF). In contrast, TEF values were not increased with increasing heating time and concentrations of non-targeted nanoparticles (PG-SPIONs). On the other hand, TEF values were increased with increasing concentrations and heating time so that the maximum TEF value was obtained at the highest concentration (FA-PG-SPION, 200 µg/ml) as well as the longest heating duration (60 min). Thus, it is concluded that FA-PG-SPIONs with concentrations ≥ 100 µg/ml could be introduced and used as hyperthermia sensitizing agents leading to enhanced cancer therapy efficiency.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas Metálicas/efeitos adversos , Compostos Férricos/química , Glicerol/química , Células HeLa , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Polímeros/química
3.
Anal Bioanal Chem ; 409(12): 3271-3277, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28265710

RESUMO

To predict the response of in vivo tumors, in vitro culture of cell colonies was suggested to be a standard assay to achieve high clinical relevance. To describe the responses of cell colonies, the most widely used quantification method is to count the number and size of cell colonies under microscope. That makes the colony formation assay infeasible to be high throughput and automated. In this work, in situ analysis of cell colonies suspended in soft hydrogel was developed based on impedance measurement technique. Cell colonies cultured between a pair of parallel plate electrodes were successfully analyzed by coating a layer of base hydrogel on one side of electrode. Real-time and label-free monitoring of cell colonies was realized during the culture course. Impedance magnitude and phase angle respectively represented the summation effect of colony responses and size of colonies. In addition, dynamic response of drug-treated colonies was demonstrated. High throughput and automatic colony formation assay was realized to facilitate more objective assessments in cancer research. Graphical Abstract High throughput and automatic colony formation assay was realized by in situ impedimetric analysis across a pair of parallel plate electrodes in a culture chamber. Cell colonies suspended in soft hydrogel were cultured under the tested substance and their dynamic response was represented by impedance data.


Assuntos
Técnicas de Cultura de Células/instrumentação , Contagem de Células , Linhagem Celular Tumoral , Impedância Elétrica , Eletrodos , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química
4.
Int J Hyperthermia ; 33(3): 327-335, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27701929

RESUMO

The purpose of this study was to evaluate the combined effects of heat and polylactic-co-glycolic acid (PLGA) nanoparticles, as 5-fluorouracil carriers with/without iron oxide core, on the viability and proliferation capacity of human colon cancer cell line HT-29 in the spheroid model. HT-29 spheroid cells were treated with different concentrations of 5-FU or 5-FU-loaded into both nanoparticles for 74 h. Hyperthermia was then performed at 43 °C for 60 min. Finally, the effects of the mentioned treatments on cell viability and proliferation capacity were evaluated using the trypan blue dye exclusion test and colony formation assay, respectively. Our results showed that hyperthermia, in combination with 5-FU or PLGA nanoparticles as 5-FU carriers, significantly enhanced the cytotoxic effects as compared to the control group. Considering that nanoparticles could increase the intracellular concentration of drugs in cancer cells, the extent of cytotoxic effects following treatment with 5-FU-loaded into both nanoparticles was significantly higher than that with free 5-FU. In addition, the presence of iron oxide cores in nanoparticles during hyperthermia enhanced the cytotoxic effects of hyperthermia compared with nanoparticles without iron oxide core. Based on this study, hyperthermia in combination with 5-FU-loaded PLGA nanoparticles with iron oxide core drastically reduced the proliferation capacity of HT-29 cells; therefore, it may be considered as a new direction in the treatment of colon cancer.

5.
Neurosurg Focus ; 38(3): E12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25727221

RESUMO

OBJECT: Chloroquine (CQ) is a quinoline-based drug widely used for the prevention and treatment of malaria. More recent studies have provided evidence that this drug may also harbor antitumor properties, whereby CQ possesses the ability to accumulate in lysosomes and blocks the cellular process of autophagy. Therefore, the authors of this study set out to investigate whether CQ analogs, in particular clinically established antimalaria drugs, would also be able to exert antitumor properties, with a specific focus on glioma cells. METHODS: Toward this goal, the authors treated different glioma cell lines with quinine (QN), quinacrine (QNX), mefloquine (MFQ), and hydroxychloroquine (HCQ) and investigated endoplasmic reticulum (ER) stress-induced cell death, autophagy, and cell death. RESULTS: All agents blocked cellular autophagy and exerted cytotoxic effects on drug-sensitive and drug-resistant glioma cells with varying degrees of potency (QNX > MFQ > HCQ > CQ > QN). Furthermore, all quinoline-based drugs killed glioma cells that were highly resistant to temozolomide (TMZ), the current standard of care for patients with glioma. The cytotoxic mechanism involved the induction of apoptosis and ER stress, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and CHOP/GADD153. The induction of ER stress and resulting apoptosis could be confirmed in the in vivo setting, in which tumor tissues from animals treated with quinoline-based drugs showed increased expression of CHOP/GADD153, along with elevated TUNEL staining, a measure of apoptosis. CONCLUSIONS: Thus, the antimalarial compounds investigated in this study hold promise as a novel class of autophagy inhibitors for the treatment of newly diagnosed TMZ-sensitive and recurrent TMZ-resistant gliomas.


Assuntos
Antimaláricos/uso terapêutico , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Quinolinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Nus , Poli(ADP-Ribose) Polimerases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Molecules ; 20(7): 12364-75, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198222

RESUMO

A series of fatty acid conjugates of trans-3,4-dihydroxy-1-selenolane (DHS) were synthesized by reacting DHS with appropriate acid chlorides. The obtained monoesters were evaluated for their antioxidant capacities by the lipid peroxidation assay using a lecithin/cholesterol liposome as a model system. The observed antioxidant capacities against accumulation of the lipid hydroperoxide (LOOH) increased with increasing the alkyl chain length and became saturated for dodecanoic acid (C12) or higher fatty acid monoesters, for which the capacities were much greater than those of DHS, its tridecanoic acid (C13) diester, and PhSeSePh. On the other hand, the bacteriostatic activity of myristic acid (C14) monoester, evaluated through the colony formation assay using Bacillus subtilis, indicated that it has higher affinity to bacterial cell membranes than parent DHS. Since DHS-fatty acid conjugates would inhibit lipid peroxidation through glutathione peroxidase (GPx)-like 2e- mechanism, higher fatty acid monoesters of DHS can mimic the function of GPx4, which interacts with LOOH to reduce it to harmless alcohol (LOH). Importance of the balance between hydrophilicity and lipophilicity for the design of effective GPx4 mimics was suggested.


Assuntos
Antioxidantes/farmacologia , Ácidos Graxos/farmacologia , Glutationa Peroxidase/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Antioxidantes/química , Antipaína/farmacologia , Bacillus subtilis/efeitos dos fármacos , Colesterol/química , Colesterol/metabolismo , Ácidos Graxos/química , Compostos Heterocíclicos com 1 Anel/síntese química , Peróxidos Lipídicos/química , Peróxidos Lipídicos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
7.
Neurosurg Focus ; 37(6): E12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25434381

RESUMO

OBJECT: In a recent clinical trial, patients with newly diagnosed glioblastoma multiforme benefited from chloroquine (CQ) in combination with conventional therapy (resection, temozolomide [TMZ], and radiation therapy). In the present study, the authors report the mechanism by which CQ enhances the therapeutic efficacy of TMZ to aid future studies aimed at improving this therapeutic regimen. METHODS: Using in vitro and in vivo experiments, the authors determined the mechanism by which CQ enhances TMZ cytotoxicity. They focused on the inhibition-of-autophagy mechanism of CQ by knockdown of the autophagy-associated proteins or treatment with autophagy inhibitors. This mechanism was tested using an in vivo model with subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ. RESULTS: Knockdown of the autophagy-associated proteins (GRP78 and Beclin) or treatment with the autophagy inhibitor, 3-methyl adenine (3-MA), blocked autophagosome formation and reduced CQ cytotoxicity, suggesting that autophagosome accumulation precedes CQ-induced cell death. In contrast, blocking autophagosome formation with knockdown of GRP78 or treatment with 3-MA enhanced TMZ cytotoxicity, suggesting that the autophagy pathway protects from TMZ-induced cytotoxicity. CQ in combination with TMZ significantly increased the amounts of LC3B-II (a marker for autophagosome levels), CHOP/GADD-153, and cleaved PARP (a marker for apoptosis) over those with untreated or individual drug-treated glioma cells. These molecular mechanisms seemed to take place in vivo as well. Subcutaneously implanted U87MG tumors from mice treated with CQ in combination with TMZ displayed higher levels of CHOP/GADD-153 than did untreated or individual drug-treated tumors. CONCLUSIONS: Taken together, these results demonstrate that CQ blocks autophagy and triggers endoplasmic reticulum stress, thereby increasing the chemosensitivity of glioma cells to TMZ.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Antirreumáticos/efeitos adversos , Autofagia/efeitos dos fármacos , Cloroquina/efeitos adversos , Cloroquina/farmacologia , Dacarbazina/análogos & derivados , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dacarbazina/efeitos adversos , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Artigo em Inglês | MEDLINE | ID: mdl-38432774

RESUMO

The ultraviolet (UV) component of sunlight can damage DNA. Although most solar UV is absorbed by the ozone layer, wavelengths > 300 nm (UVA and UVB bands) can reach the Earth's surface. It is essential to understand the genotoxic effects of UV light, particularly in natural environments. Caulobacter crescentus, a bacterium widely employed as a model for cell cycle studies, was selected for this study. Strains proficient and deficient in DNA repair (uvrA-) were used to concurrently investigate three genotoxic endpoints: cytotoxicity, SOS induction, and gene mutation, using colony-formation, the SOS chromotest, and RifR mutagenesis, respectively. Our findings underscore the distinct impacts of individual UV bands and the full spectrum of sunlight itself in C. crescentus. UVC light was highly genotoxic, especially for the repair-deficient strain. A UVB dose equivalent to 20 min sunlight exposure also affected the cells. UVA exposure caused a significant response only at high doses, likely due to activation of photorepair. Exposure to solar irradiation resulted in reduced levels of SOS induction, possibly due to decreased cell survival. However, mutagenicity is increased, particularly in uvrA- deficient cells.


Assuntos
Caulobacter crescentus , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Caulobacter crescentus/genética , Dano ao DNA , Reparo do DNA , Mutação
9.
Methods Cell Biol ; 174: 137-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710047

RESUMO

Radiation therapy induces targeted effects in the cells that are irradiated and also non-targeted effects (i.e. bystander effects) in non-irradiated cells that are close to or at short distance (<∼1 mm) from irradiated cells. Bystander effects are mediated by intercellular communications and may result in cytotoxic and genotoxic modifications. Their occurrence and relative contribution to the irradiation outcome are influenced by several parameters among which the particle linear energy transfer seems to be prominent. Bystander effects were first observed after external radiation therapy, but have been described also following targeted radionuclide therapy. Therefore, we propose a method to investigate their occurrence in experimental conditions where cells are exposed to radiopharmaceuticals. In this approach, clonogenic cell death is the biological endpoint of the bystander effects caused by irradiation with alpha particles (a potent inducer of the bystander response).


Assuntos
Partículas alfa , Comunicação Celular , Partículas alfa/uso terapêutico , Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Linhagem Celular Tumoral
10.
Biomolecules ; 12(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009010

RESUMO

BACKGROUND: Due to resistance to conventional therapy, a blood-brain barrier that results in poor drug delivery, and a high potential for metastasis, glioblastoma (GBM) presents a great medical challenge. Since the repertoire of the possible therapies is very limited, novel therapeutic strategies require new drugs as well as new approaches. The multiple roles played by L-tryptophan (Trp) in tumorigenesis of GBM and the previously found antiproliferative properties of Trp-bearing dendrimers against this malignancy prompted us to design novel polyfunctional peptide-based dendrimers covalently attached to N1-alkyl tryptophan (Trp) residues. Their antiproliferative properties against GBM and normal human astrocytes (NHA) and their antioxidant potential were tested. METHODS: Two groups of amphiphilic peptide dendrimers terminated with N1-butyl and N1-aminopentane tryptophan were designed. The influence of dendrimers on viability of NHA and human GBM cell lines, displaying different genetic backgrounds and tumorigenic potentials, was determined by the MTT test. The influence of compounds on the clonogenic potential of GBM cells was assessed by colony-formation assay. Dendrimers were tested for radical scavenging potency as well as redox capability (DPPH, ABTS, and FRAP models). RESULTS: Several peptide dendrimers functionalized with N1-alkyl-tryptophan at 5 µM concentration exhibited high selectivity towards GBM cells retaining 85-95% viable NHA cells while killing cancer cells. In both the MTT and colony-formation assays, compounds 21 (functionalized with N1-butyl-Trp and (+)8 charged) and 25 (functionalized with N1-aminopentane-Trp and (+)12 charged) showed the most promise for their development into anticancer drugs. According to ABTS, DPPH, and FRAP antioxidant tests, dendrimers functionalized with N1-alkylated Trp expressed higher ROS-scavenging capacity (ABTS and DPPH) than those with unsubstituted Trp. CONCLUSIONS: Peptide dendrimers functionalized with N1-alkyl-tryptophan showed varying toxicity to NHA, while all were toxic to GBM cells. Based on their activity towards inhibition of GBM viability and relatively mild effect on NHA cells the most advantageous were derivatives 21 and 25 with the respective di-dodecyl and dodecyl residue located at the C-terminus. As expected, peptide dendrimers functionalized with N1-alkyl-tryptophan expressed higher scavenging potency against ROS than dendrimers with unsubstituted tryptophan.


Assuntos
Dendrímeros , Glioblastoma , Antioxidantes , Linhagem Celular Tumoral , Dendrímeros/química , Glioblastoma/tratamento farmacológico , Humanos , Peptídeos/química , Peptídeos/farmacologia , Espécies Reativas de Oxigênio , Triptofano/química , Triptofano/farmacologia
11.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551685

RESUMO

Reportedly, the intermediate-conductance Ca2+-activated potassium channel KCa3.1 contributes to the invasion of glioma cells into healthy brain tissue and resistance to temozolomide and ionizing radiation. Therefore, KCa3.1 has been proposed as a potential target in glioma therapy. The aim of the present study was to assess the variability of the temozolomide- and radiation-sensitizing effects conferred by the KCa3.1 blocking agent TRAM-34 between five different glioma cell lines grown as differentiated bulk tumor cells or under glioma stem cell-enriching conditions. As a result, cultures grown under stem cell-enriching conditions exhibited indeed higher abundances of mRNAs encoding for stem cell markers compared to differentiated bulk tumor cultures. In addition, stem cell enrichment was paralleled by an increased resistance to ionizing radiation in three out of the five glioma cell lines tested. Finally, TRAM-34 led to inconsistent results regarding its tumoricidal but also temozolomide- and radiation-sensitizing effects, which were dependent on both cell line and culture condition. In conclusion, these findings underscore the importance of testing new drug interventions in multiple cell lines and different culture conditions to partially mimic the in vivo inter- and intra-tumor heterogeneity.

12.
Biomater Adv ; 143: 213178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36368056

RESUMO

Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 µm, 664 ± 4 µm, 758 ± 7 µm and 1329 ± 44 µm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 µg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.


Assuntos
Neoplasias da Mama , Nanofibras , Humanos , Feminino , Nanofibras/toxicidade , Polietilenoglicóis/química , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Polímeros/química , Etilenos , Óxidos
13.
Biomedicines ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453619

RESUMO

Cell therapy products have significant limitations, such as storage instability, difficulties with transportation, and toxicity issues such as tumorigenicity and immunogenicity. Extracellular vesicles (EVs) secreted from cells show potential for therapeutic agent development. EVs have not been widely examined as investigational drugs, and non-clinical studies for the clinical approval of EV therapeutic agents are challenging. EVs contain various materials, such as DNA, cellular RNA, cytokines, chemokines, and microRNAs, but do not proliferate or divide like cells, thus avoiding safety concerns related to tumorigenicity. However, the constituents of EVs may induce the proliferation of normal cells; therefore, the suitability of vesicles should be verified through non-clinical safety evaluations. In this review, the findings of non-clinical studies on EVs are summarized. We describe non-clinical toxicity studies of EVs, which should be useful for researchers who aim to develop these vesicles into therapeutic agents. A new method for evaluating the immunotoxicity and tumorigenicity of EVs should also be developed.

14.
Cell Calcium ; 103: 102554, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193095

RESUMO

Androgen deprivation therapy (ADT) is the main treatment for advanced prostate cancer (PCa) but resistance results in progression to terminal castrate resistant PCa (CRPC), where there is an unmet therapeutic need. Aberrant intracellular calcium (Cai2+) is known to promote neoplastic transformation and treatment resistance. There is growing evidence that voltage gated calcium channel (VGCC) expression is increased in cancer, particularly CACNA1D/CaV1.3 in CRPC. The aim of this study was to investigate if increased CaV1.3 drives resistance to ADT and determine its associated impact on Cai2+ and cancer biology. Bioinformatic analysis revealed that CACNA1D gene expression is increased in ADT treated PCa patients. This was corroborated in both in vivo LNCaP xenograft mouse and in vitro PCa cell line models, which demonstrated a significant increase in CaV1.3 protein expression following ADT with bicalutamide. Expression was found to be of a shortened 170kDa CaV1.3 isoform associated with plasma and intracellular membranes, which failed to induce calcium influx following membrane depolarisation. Instead, under ADT CaV1.3 mediated a rise in basal cytosolic calcium and an increase in store operated calcium entry (SOCE). This mechanism was found to promote the proliferation and survival of ADT resistant CRPC cells. Overall, this study demonstrates for the first time in PCa that under ADT specific CaV1.3 isoforms promote an upregulation of SOCE which contributes to treatment resistance and CRPC biology. Thus, this novel oncochannel represents a target for therapeutic development to improve PCa patient outcomes.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/farmacologia , Androgênios/uso terapêutico , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Regulação para Cima
15.
Methods Mol Biol ; 2255: 171-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033103

RESUMO

Immunogenic cell death (ICD) is a form of regulated cell death that is capable of eliciting an immune response. In cancer, tumor cells undergoing ICD are known to emit damage associated molecular patterns (DAMPs) that are capable of recruiting and activating antigen presenting cells (APCs), which ultimately lead to the activation of an antitumor immune response. Surface translocation of intracellular chaperones such as calreticulin, release of TLR agonists such as high mobility box 1, and the secretion of type I IFN are some of the hallmark features seen in tumors succumbing to ICD. While detection of these molecules is suggestive of ICD induction, which alone does not certify that the treatment is an ICD inducer, an in vivo vaccination assay using injured tumor cells remains to be the gold standard method to functionally verify ICD. This chapter will discuss the necessary steps required to conduct an in vivo vaccination assay, focusing on the preparation of vaccine using treated tumor cells, and how these cells are then utilized in the animal model.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Vacinas Anticâncer/administração & dosagem , Modelos Animais de Doenças , Morte Celular Imunogênica , Melanoma Experimental/terapia , Vacinação/métodos , Animais , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos
16.
Methods Mol Biol ; 2262: 335-346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977488

RESUMO

RAS proteins are key players in multiple cellular processes. To study the role of RAS proteins individually or in combination, we have developed MEFs that can be rendered RASless, i.e., devoid of all endogenous RAS isoforms. These cells have significantly contributed to our understanding of the requirements for RAS functions in cell proliferation as well as their implications in diverse cellular processes. Here, we describe methods using RASless MEFs to study RAS-dependent cellular activities with special emphasis on proliferation. We provide the details to identify inducers of RAS-independent proliferation in colony assays. We recommend following these stringent guidelines to avoid false-positive results. Moreover, this protocol can be adapted to generate RASless MEFs ectopically expressing RAS variants to interrogate their function in the absence of endogenous RAS isoforms or to perform experiments in the absence of RAS. Finally, we also describe protocols to generate and use RASless MEFs for cell cycle analyses using the FUCCI cell cycle indicator.


Assuntos
Ciclo Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Mutação , Proteínas ras/administração & dosagem , Proteínas ras/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Camundongos , Camundongos Knockout , Proteínas ras/genética
17.
Biomolecules ; 11(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804286

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). Neuroblastoma (NB) is one of the most common cancers of childhood derived from the neural crest cells. The survival rate for patients with GBM and high-risk NB is poor; therefore, novel therapeutic approaches are needed. Increasing evidence suggests a dual role of redox-active compounds in both tumorigenesis and cancer treatment. Therefore, in this study, polyfunctional peptide-based dendrimeric molecules of the bola structure carrying residues with antiproliferative potential on one side and the antioxidant residues on the other side were designed. METHODS: We synthesized non-symmetric bola dendrimers and assessed their radical scavenging potency as well as redox capability. The influence of dendrimers on viability of rat primary cerebellar neurons (CGC) and normal human astrocytes (NHA) was determined by propidium iodide staining and cell counting. Cytotoxicity against human GBM cell lines, T98G and LN229, and NB cell line SH-SY5Y was assessed by cell counting and colony forming assay. RESULTS: Testing of CGC and NHA viability allowed to establish a range of optimal dendrimers structure and concentration for further evaluation of their impact on two human GBM and one human NB cell lines. According to ABTS, DPPH, FRAP, and CUPRAC antioxidant tests, the most toxic for normal cells were dendrimers with high charge and an excess of antioxidant residues (Trp and PABA) on both sides of the bola structure. At 5 µM concentration, most of the tested dendrimers neither reduced rat CGC viability below 50-40%, nor harmed human neurons (NHA). The same dose of compounds 16 or 22, after 30 min treatment decreased the number of SH-SY5Y and LN229 cells, but did not affect the number of T98G cells 48 h post treatment. However, either compound significantly reduced the number of colonies formed by SH-SY5Y, LN229, and T98G cells measured 14 days after treatment. CONCLUSIONS: Peptide dendrimers with non-symmetric bola structure are excellent scaffolds for design of molecules with pro/antioxidant functionality. Design of molecules with an excess of positive charges and antioxidant residues rendered molecules with high neurotoxicity. Single, 30 min exposition of the GBM and NB cell lines to the selected bola dendrimers significantly suppressed their clonogenic potential.


Assuntos
Dendrímeros/química , Glioblastoma/patologia , Neuroblastoma/patologia , Peptídeos/química , Animais , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/síntese química , Sequestradores de Radicais Livres/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Triptofano/química
18.
Cell Rep ; 34(5): 108688, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535054

RESUMO

Chromodomain helicase DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin-remodeling factor that is encoded by the most frequently mutated gene in individuals with autism spectrum disorder. CHD8 is expressed not only in neural tissues but also in many other organs; however, its functions are largely unknown. Here, we show that CHD8 is highly expressed in and maintains the stemness of hematopoietic stem cells (HSCs). Conditional deletion of Chd8 specifically in mouse bone marrow induces cell cycle arrest, apoptosis, and a differentiation block in HSCs in association with upregulation of the expression of p53 target genes. A colony formation assay and bone marrow transplantation reveal that CHD8 deficiency also compromises the stemness of HSCs. Furthermore, additional ablation of p53 rescues the impaired stem cell function and differentiation block of CHD8-deficient HSCs. Our results thus suggest that the CHD8-p53 axis plays a key role in regulation of the stemness and differentiation of HSCs.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Caderinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Animais , Transtorno do Espectro Autista/genética , Caderinas/genética , Diferenciação Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Supressora de Tumor p53/genética
19.
Cancers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671920

RESUMO

The ability to grow in anchorage-independent conditions is an important feature of malignant cells, and it is well-established that cellular phenotypes in adherent cultures can differ widely from phenotypes observed in xenografts and anchorage-independent conditions. The anchorage-independent soft-agar colony formation assay has been widely used as a bridge between adherent cell cultures and animal tumor studies, providing a reliable in vitro tool to predict the tumorigenicity of cancer cells. However, this functional assay is limited in its utility for molecular mechanistic studies, as currently there is no reliable method that allows the extraction of biological macromolecules from cells embedded in soft-agar matrices, especially in experimental conditions where no visible colonies form. We developed a set of new methods that enable the extraction of DNA, RNA and proteins directly from cells embedded in soft agar, allowing for a wide range of molecular signaling analysis. Using the new methods and human mammary epithelial cells (HMECs), we studied the role of epithelial-mesenchymal transition (EMT) in the ability of HMECs to form colonies in soft agar. We found that, when cultured in soft agar instead of in adherent cultures, immortalized non-malignant HME-hTERT cells upregulated the epithelial program, which was noted to be necessary for their survival in this anchorage-independent condition. Overexpression of SV40 small T antigen (ST) or the EMT master-regulator SNAI1 negates this requirement and significantly enhances colony formation in soft agar driven by mutant-RAS. Interestingly, we found that, similar to SNAI1, ST also promotes EMT changes in HMECs, providing further support for EMT as a prerequisite for the efficient anchorage-independent colony formation driven by mutant-RAS in our HMEC model.

20.
Radiat Oncol ; 15(1): 248, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121517

RESUMO

BACKGROUND: The clonogenic assay is a versatile and frequently used tool to quantify reproductive cell survival in vitro. Current state-of-the-art analysis relies on plating efficiency-based calculations which assume a linear correlation between the number of cells seeded and the number of colonies counted. The present study was designed to test the validity of this assumption and to evaluate the robustness of clonogenic survival results obtained. METHODS: A panel of 50 established cancer cell lines was used for comprehensive evaluation of the clonogenic assay procedure and data analysis. We assessed the performance of plating efficiency-based calculations and examined the influence of critical experimental parameters, such as cell density seeded, assay volume, incubation time, as well as the cell line-intrinsic factor of cellular cooperation by auto-/paracrine stimulation. Our findings were integrated into a novel mathematical approach for the analysis of clonogenic survival data. RESULTS: For various cell lines, clonogenic growth behavior failed to be adequately described by a constant plating efficiency, since the density of cells seeded severely influenced the extent and the dynamics of clonogenic growth. This strongly impaired the robustness of survival calculations obtained by the current state-of-the-art method using plating efficiency-based normalization. A novel mathematical approach utilizing power regression and interpolation of matched colony numbers at different irradiation doses applied to the same dataset substantially reduced the impact of cell density on survival results. Cellular cooperation was observed to be responsible for the non-linear clonogenic growth behavior of a relevant number of cell lines and the impairment of survival calculations. With 28/50 cell lines of different tumor entities showing moderate to high degrees of cellular cooperation, this phenomenon was found to be unexpectedly common. CONCLUSIONS: Our study reveals that plating efficiency-based analysis of clonogenic survival data is profoundly compromised by cellular cooperation resulting in strongly underestimated assay-intrinsic errors in a relevant proportion of established cancer cell lines. This severely questions the use of plating efficiency-based calculations in studies aiming to achieve more than semiquantitative results. The novel approach presented here accounts for the phenomenon of cellular cooperation and allows the extraction of clonogenic survival results with clearly improved robustness.


Assuntos
Comunicação Celular , Ensaio Tumoral de Célula-Tronco/métodos , Sobrevivência Celular , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa