Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(14): 16864-16876, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32151137

RESUMO

We demonstrated catechol lipid-based bioresin, which is collected from lacquer trees, to produce conductive pastes that can be processed at low temperatures, which are highly adhesive and multidurable. Our conductive paste, which consists of catechol lipid-based urushiol resin and a multimodal mixture of silver fillers, exhibited stable dispersion with shear thinning properties. The urushiol lacquer induced spontaneous reduction of silver salt at the surface of the silver fillers, thereby contributing to lower the contact resistance between conductive fillers in the electrical conduction. Furthermore, the directional volume shrinkage of the urushiol lacquer matrix in a cross-linking reaction resulted in a highly ordered microstructure of the silver fillers with layer-by-layer stacking of the silver flakes. This structure contributed to the improvement of the electrical contact between fillers as well as excellent mechanical hardness, anti-scratch capability, and the long-term environmental stability of the conductive films. Conductive films based on the silver paste with urushiol lacquer exhibited low electrical resistivity below 4.4 × 10-5 Ω cm, 5B-class strong adhesion strength, and high hardness exceeding 200 MPa. Finally, we demonstrated the facile room-temperature processability and screen printability of the UL-Ag paste by fabricating a printed antenna and three-dimensional (3D) electrode assembly based on a plastic 3D block.

2.
Nanoscale Res Lett ; 12(1): 507, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28836179

RESUMO

Conductivity-tunable, different colored CuS nanoparticle-coated CuSCN composites were synthesized in a single pot using a mixture of copper sulfate and sodium thiosulfate in the presence of triethyl amine hydrothiocyanate (THT) at the ambient condition. When these reagents are mixed in 1:1:1 molar ratio, white-gray-colored CuSCN was produced. In the absence of THT, microsized dark blue-colored CuS particles were produced. However, when THT is present in the solution mixture by different amounts, colored conducting CuS nanoparticle-coated CuSCN composite was produced. CuS nanoparticles are not deposited on CuSCN soon after mixing these regents, but it takes nearly overnight to see the color change (CuS production) in the white CuSCN dispersed mixture. TEM analysis shows that composite consists of hexagonal CuS nanoparticles in the range of ~ 3-10 nm in size. It is interesting to note that CuS-coated CuSCN possesses higher conductivity than neat CuS or CuSCN. Moreover, strong IR absorption was observed for CuS-coated CuSCN composite compared to neat CuS (absence of THT) or CuSCN. Lowest resistivity of 0.05 Ω cm was observed for annealed (250 °C) CuS-coated CuSCN particles (adding 10 ml of THT) under nitrogen atmosphere. Also, this simple method could be extended to be used in the synthesis of CuS-coated composites on the other nanomaterials such as metal oxides, polymers, and metal nanoparticles.

3.
Mater Sci Eng C Mater Biol Appl ; 44: 144-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280690

RESUMO

Conducting poly(o-phenylenediamine) (POPD)/graphene oxide (GO) composites were prepared using a facile and efficient method involving the in-situ polymerization of OPD in the presence of GO in an aqueous medium. Copper sulfate was used as an oxidative initiator for the polymerization of OPD. Scanning electron microscopy and transmission electron microscopy images showed that POPD microfibrils were formed and distributed relatively uniformly with GO sheets in the obtained composites. X-ray diffraction results revealed the highly crystal structure of POPD. This composite exhibited good catalytic activity and stability. These results highlight the potential applications of POPD/GO composites as excellent electrochemical sensors. The composites were used to modify glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media.


Assuntos
Carbono/química , Grafite/química , Peróxido de Hidrogênio/análise , Fenilenodiaminas/química , Eletrodos , Vidro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polimerização , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa