Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 112(6): 357-371, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37479835

RESUMO

AtAIRP5 RING E3 ubiquitin ligase was recently identified as a positive regulator of the abscisic acid (ABA)-mediated drought stress response by stimulating the degradation of serine carboxypeptidase-like 1. Here, we identified GDSL-type esterase/lipase 22 (AtGELP22) and AtGELP23 as additional interacting partners of AtAIRP5. Yeast two-hybrid, pull-down, co-immunoprecipitation, and ubiquitination analyses verified that AtGELP22 and AtGELP23 are ubiquitinated target proteins of AtAIRP5. AtGELP22 and AtGELP23 were colocalized with AtAIRP5 to punctate-like structures in the cytosolic fraction, in which PYK10 and NAI2, two ER body marker proteins, are localized. T-DNA insertion atgelp22 and atgelp23 single knockout mutant plants showed phenotypes indistinguishable from those of wild-type plants under ABA treatment. In contrast, RNAi-mediated cosuppression of AtGELP22 and AtGELP23 resulted in hypersensitive ABA-mediated stomatal movements and higher tolerance to drought stress than that of the single mutant and wild-type plants. Taken together, our results suggest that the putative GDSL-type esterases/lipases AtGELP22 and AtGELP23 act as redundant negative regulators of the ABA-mediated drought stress response in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Interferência de RNA , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Secas , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138994

RESUMO

The frequency and extent of transgene-mediated cosuppression varies substantially among plant genes. However, the underlying mechanisms leading to strong cosuppression have received little attention. In previous studies, we showed that the expression of FAD2 in the seeds of Arabidopsis results in strong RDR6-mediated cosuppression, where both endogenous and transgenic FAD2 were silenced. Here, the FAD2 strong cosuppression system was quantitatively investigated to identify the genetic factors by the expression of FAD2 in their mutants. The involvement of DCL2, DCL4, AGO1, and EIN5 was first confirmed in FAD2 cosuppression. SKI2, a remover of 3' end aberrant RNAs, was newly identified as being involved in the cosuppression, while DCL3 was identified as antagonistic to DCL2 and DCL3. FAD2 cosuppression was markedly reduced in dcl2, dcl4, and ago1. The existence of an RDR6-independent cosuppression was revealed for the first time, which was demonstrated by weak gene silencing in rdr6 ein5 ski2. Further investigation of FAD2 cosuppression may unveil unknown genetic factor(s).


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Interferência de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Interferente Pequeno/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Inativação Gênica , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo
3.
J Phycol ; 57(1): 160-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32965671

RESUMO

The red macroalga Pyropia yezoensis is an economically important seaweed widely cultured in Asian countries and is a model organism for molecular biological and commercial research. This species is unique in that it utilizes both phycobilisomes and transmembrane light-harvesting proteins as its antenna system. Here, one of the genes of P. yezoensis (PyLHCI) was selected for introduction into its genome to overexpress PyLHCI. However, the co-suppression phenomenon occurred. This is the first documentation of co-suppression in algae, in which it exhibits a different mechanism from that in higher plants. The transformant (T1) was demonstrated to have higher phycobilisomes and lower LHC binding pigments, resulting in a redder color, higher sensitivity to salt stress, smaller in size, and slower growth rate than the wildtype (WT). The photosynthetic performances of T1 and WT showed similar characteristics; however, P700 reduction was slower in T1. Most importantly, T1 could release a high percentage of carpospores in young blades to switch generation during its life cycle, which was rarely seen in WT. The co-suppression of PyLHCI revealed its key roles in light harvesting, stress resistance, and generation alternation (generation switch from gametophytes to sporophytes, and reproduction from asexual to sexual).


Assuntos
Rodófitas , Alga Marinha , Células Germinativas Vegetais , Fotossíntese , Interferência de RNA
4.
Biochem Biophys Res Commun ; 524(4): 951-956, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32059849

RESUMO

Innate immunity in plants relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the plant cell surface. CaLecRK-S.5, a pepper L-type lectin receptor kinase, has been shown to confer broad-spectrum resistance through priming activation. To further elucidate the molecular mechanism of CaLecRK-S.5, transgenic tobacco plants were generated in this study. Interestingly, hemizygous transgenic plants exhibited a high accumulation of CaLecRK-S.5, but this accumulation was completely abolished in homozygous transgenic plants by a cosuppression mechanism. Gain-of-function and loss-of-function analyses revealed that CaLecRK-S.5 plays a positive role in Phytophthora elicitin-mediated defense responses.


Assuntos
Nicotiana/imunologia , Phytophthora infestans/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Proteínas Quinases/imunologia , Proteínas/imunologia , Piper/genética , Piper/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Nicotiana/genética , Transgenes
5.
Plant Cell Rep ; 38(10): 1317-1328, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31385037

RESUMO

KEY MESSAGE: Co-suppression of chaperonic ClpC1 and ClpC2 in Nicotiana benthamiana significantly affect the development and exogenous application of gibberellin partially rescue the developmental defects. Over the past decade, the Clp protease complex has been identified as being implicated in plastid protein quality control in plant cells. CLPC1 and CLPC2 proteins form the chaperone subunits of the Clp protease complex and unfold protein substrates to thread them into the ClpP complex. Here, using the technique of virus-induced gene silencing (VIGS), we suppressed both Nicotiana benthamiana ClpC1 and ClpC2 (NbClpC1/C2) functioning as chaperone subunits in the protease complex. Co-suppression of NbClpC1/C2 caused chlorosis and retarded-growth phenotype with no seed formation and significantly reduced root length. We found that co-suppression of NbClpC1/C2 also affected stomata and trichome formation and vascular bundle differentiation and patterning. Analysis of phytohormones revealed significant alteration and imbalance of major hormones in the leaves of NbClpC1/C2 co-suppressed plant. We also found that application of gibberellin (GA3) partially rescued the developmental defects. Co-suppression of NbClpC1/C2 significantly affected the development of N. benthamiana and exogenous application of GA3 partially rescued the developmental defects. Overall, our findings demonstrate that CLPC1 and CLPC2 proteins have a pivotal role in plant growth and development.


Assuntos
Nicotiana/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Nicotiana/genética
6.
Plant Mol Biol ; 97(3): 253-263, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29777485

RESUMO

KEY MESSAGE: Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development. Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme L-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes D-glucose-6-P to D-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Inositol/biossíntese , Mio-Inositol-1-Fosfato Sintase/metabolismo , Interferência de RNA , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Metabolômica , Mio-Inositol-1-Fosfato Sintase/genética , Plantas Geneticamente Modificadas
7.
Biochem Biophys Res Commun ; 497(2): 749-755, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29462612

RESUMO

Mg chelatase, a key enzyme in chlorophyll biosynthesis, is comprised of I, D and H subunits. Among these subunits, the D subunit was regarded to mediate protein interactions due to its unique protein domains. However, the functional roles of the different domains of the D subunit in vivo remain unclear. In this study, we dissected the rice (Oryza sativa) D subunit (OsCHLD) into three peptide fragments: the putative chloroplast transit peptide (TP, Met1 to Arg45), the N-terminus plus linker domain (OsCHLDN + L, Ala46 to Leu485) and the C-terminus (OsCHLDC, Ile486 to Ser754), to explore the roles of these fragments. The results of the yeast two-hybrid assay and the in vitro reconstitution of the Mg-chelatase activity showed that only OsCHLDN + L interacted with the I and H subunits and maintained most of the Mg-chelatase activity in vitro. Furthermore, artificial TP-OsCHLDN + L and TP-OsCHLDC were overexpressed in rice. Interestingly, an incomplete co-suppression had occurred in both of the overexpressed (OsCHLDN + L-ox and OsCHLDC-ox) plants, resulting in a significantly downregulated expression of endogenous OsCHLD. Therefore, these transgenic plants had adequate OsCHLDN + L and OsCHLDC instead of endogenous OsCHLD, providing ideal models to study the function of different domains of the D subunit in vivo. The OsCHLDN + L-ox plants showed an identical phenotype to that of the wild type, while the OsCHLDC-ox plants demonstrated a yellowish phenotype that resembled the D subunit mutants. These results indicated that only OsCHLDN + L could complement the function of endogenous OsCHLD, providing direct evidence that OsCHLDN + L is essential for Mg-chelatase activity in vivo.


Assuntos
Liases/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Liases/química , Liases/genética , Oryza/química , Oryza/genética , Oryza/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Regulação para Cima
8.
Plant Biotechnol J ; 16(2): 451-458, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28664596

RESUMO

Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Interferência de RNA , Xilema/citologia , Xilema/genética , Xilema/metabolismo
9.
Transgenic Res ; 24(6): 1017-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26338266

RESUMO

Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.


Assuntos
Agrobacterium tumefaciens/genética , DNA Bacteriano/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Transformação Genética/genética , Transgenes/genética , Zea mays/genética , Variações do Número de Cópias de DNA , Genes de Plantas , Vetores Genéticos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
10.
Plant Sci ; 341: 112016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311253

RESUMO

The discovery of co-suppression in plants has greatly boosted the study of gene silencing mechanisms, but its triggering mechanism has remained a mystery. In this study, we explored its possible trigger mechanism by using Fatty acid desaturase 2 (FAD2) and Fatty acid elongase 1 (FAE1) strong co-suppression systems. Analysis of small RNAs in FAD2 co-suppression lines showed that siRNAs distributed throughout the coding region of FAD2 with an accumulated peak. However, mutations of the peak siRNA-matched site and siRNA derived site had not alleviated the co-suppression of its transgenic lines. Synthetic FAD2 (AtFAD2sm), which has synonymous mutations in the entire coding region, failed to trigger any co-suppression. Furthermore, 5' and 3' portions of AtFAD2 and AtFAD2sm were swapped to form two hybrid genes, AtFAD2-3sm and AtFAD2-5sm. 80 % and 92 % of their transgenic lines exhibited co-suppression, respectively. Finally, FAE1s with different degrees of the continuous sequence identity compared with AtFAE1 were tested in their Arabidopsis transgenic lines, and the results showed the co-suppression frequency was reduced as their continuous sequence identity stepped down. This work suggests that contiguous identity between the entire coding regions of transgenic and native genes rather than a special region is essential for a strong co-suppression.


Assuntos
Arabidopsis , Ácidos Graxos Dessaturases , Interferência de RNA , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , RNA Interferente Pequeno
11.
Genetics ; 224(3)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184565

RESUMO

A striking characteristic of the molecular techniques of genetics is that they are derived from natural occurring systems. RNA interference, for example, utilizes a mechanism that evolved in eukaryotes to destroy foreign nucleic acid. Other case studies I highlight are restriction enzymes, DNA sequencing, polymerase chain reaction, gene targeting, fluorescent proteins (such as, green fluorescent protein), induced pluripotent stem cells, and clustered regularly interspaced short palindromic repeats-CRISPR associated 9. The natural systems' strategy for technique development means that biologists utilize the activity of a mechanism's effector (protein or RNA) and exploit biological specificity (protein or nucleic acid can cause precise reactions). I also argue that the developmental trajectory of novel molecular techniques, such as RNA interference, has 4 characteristic phases. The first phase is discovery of a biological phenomenon. The second phase is identification of the biological mechanism's trigger(s): the effector and biological specificity. The third phase is the application of the trigger(s) as a technique. The final phase is the maturation and refinement of the technique. Developing new molecular techniques from nature is crucial for future genetic research.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA , Interferência de RNA , Proteínas de Fluorescência Verde/genética
12.
Plant Direct ; 5(6): e00331, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34179680

RESUMO

Our initial goal was to evaluate the contributions of high 18:1 phosphatidylcholine and the expression level of FAE1 to the accumulation of very-long-chain fatty acids (VLCFAs), which have wide applications as industrial feedstocks. Unexpectedly, VLCFAs were not improved by increasing the proportions of 18:1 in fad2-1 mutant, FAD2 artificial miRNA, and FAD2 co-suppression lines. Expressing Arabidopsis FAE1 resulted in co-suppression in 90% of transgenic lines, which was effectively released when it was expressed in the rdr6-11 mutant host. When FAE1 could be highly expressed, apart from its naturally preferred product, 20:1, other saturated and polyunsaturated VLCFAs also accumulated in seeds. We postulated that overabundant FAE1 might cause the diversified VLCFA profile. When FAE1 was highly expressed, knocking down FAD2 increased the content of 20:1, suggesting that the 18:1 availability in the acyl-CoA pool increased from the high 18:1-PC via acyl editing. Concurrent decreases of side products like 22:1 and 20:0 in these lines suggest that increasing availability of the preferred substrate could suppress the side elongation reactions and reverse the effect of VLCFA product diversification due to overabundant FAE1. Re-analysis of FAD2 knockdown lines indicated that increasing 18:1 led to a decrease of 22:1, which also supports the above hypothesis. These results demonstrate that 18:1 substrate could be increased by a downregulation of FAD2 and that a balance between the levels of enzyme and substrate may be crucial for engineering-specific VLCFA products.

13.
Plant Methods ; 16(1): 154, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33292320

RESUMO

BACKGROUND: Pentatricopeptide-repeat proteins (PPRs) characterized by tandem arrays of a degenerate 35-amino-acid repeat (PPR motif) can bind a single strand RNA and regulate organelle gene expression at the post-transcriptional level, including RNA cleavage, splicing, editing and stability etc. PPRs are conserved in all eukaryotes and extremely expanded in higher plants. Many knockout mutants of PPR genes are embryonically lethal. These genes are named EMB PPRs and functional analysis of them is hindered by the difficulty in obtaining their knockout mutants. RESULTS: Here, we report a new method for functional analysis of plastid EMB PPRs by efficiently constructing their cosuppression lines in Arabidopsis. When we overexpressed a mutated full length or truncated coding sequence (CDS) of EMB PPRs, such as EMB2279, EMB2654 and EMB976 (all belong to the P family PPRs) in the wild-type (WT) background, a large portion of T1 plants displayed chlorosis phenotypes, which are similar to those of the weak allele mutants, knockdown lines or partially complementary lines. RT-PCR analysis showed that overexpression of the truncated EMB PPRs led to significant and specific downregulation of their corresponding endogenous mRNAs. However, when these EMB PPRs were overexpressed in the Post transcriptional Gene Silencing (PTGS) deficient mutant, RNA-dependent RNA polymerase 6 (rdr6), none of the T1 plants displayed chlorosis phenotypes. These results indicate that the chlorosis phenotype results from post transcriptional silencing of the corresponding endogenous gene (also known as sense cosuppression). CONCLUSIONS: Overexpression of an appropriately truncated EMB PPR CDS in WT leads to gene silencing in a RDR6-dependent manner, and this method can be employed to study the unknown function of EMB PPR genes. By this method, we showed that EMB976 is required for splicing of chloroplast clpP1 intron 2 and ycf3 intron 1.

14.
Cells ; 9(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151001

RESUMO

Transposable elements (TEs) are mobile genomic sequences that are normally repressed to avoid proliferation and genome instability. Gene silencing mechanisms repress TEs by RNA degradation or heterochromatin formation. Heterochromatin maintenance is therefore important to keep TEs silent. Loss of heterochromatic domains has been linked to lamin mutations, which have also been associated with derepression of TEs. In fact, lamins are structural components of the nuclear lamina (NL), which is considered a pivotal structure in the maintenance of heterochromatin domains at the nuclear periphery in a silent state. Here, we show that a lethal phenotype associated with Lamin loss-of-function mutations is influenced by Drosophilagypsy retrotransposons located in euchromatic regions, suggesting that NL dysfunction has also effects on active TEs located in euchromatic loci. In fact, expression analysis of different long terminal repeat (LTR) retrotransposons and of one non-LTR retrotransposon located near active genes shows that Lamin inactivation determines the silencing of euchromatic TEs. Furthermore, we show that the silencing effect on euchromatic TEs spreads to the neighboring genomic regions, with a repressive effect on nearby genes. We propose that NL dysfunction may have opposed regulatory effects on TEs that depend on their localization in active or repressed regions of the genome.


Assuntos
Elementos de DNA Transponíveis/genética , Instabilidade Genômica/genética , Laminas/genética , Lâmina Nuclear/metabolismo , Animais , Elementos de DNA Transponíveis/fisiologia , Drosophila , Drosophila melanogaster/metabolismo , Genômica/métodos , Heterocromatina/metabolismo , Laminas/metabolismo , Retroelementos/fisiologia
15.
Plants (Basel) ; 9(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085404

RESUMO

Metabolites in plants are the products of cellular metabolic processes, and their differential amount can be regarded as the final responses of plants to genetic, epigenetic, or environmental stresses. The Clp protease complex, composed of the chaperonic parts and degradation proteases, is the major degradation system for proteins in plastids. ClpC1 and ClpC2 are the two chaperonic proteins for the Clp protease complex and share more than 90% nucleotide and amino acid sequence similarities. In this study, we employed virus-induced gene silencing to simultaneously suppress the expression of ClpC1 and ClpC2 in Nicotiana benthamiana (NbClpC1/C2). The co-suppression of NbClpC1/C2 in N. benthamiana resulted in aberrant development, with severely chlorotic leaves and stunted growth. A comparison of the control and NbClpC1/C2 co-suppressed N. benthamiana metabolomes revealed a total of 152 metabolites identified by capillary electrophoresis time-of-flight mass spectrometry. The co-suppression of NbClpC1/C2 significantly altered the levels of metabolites in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and the purine biosynthetic pathway, as well as polyamine and antioxidant metabolites. Our results show that the simultaneous suppression of ClpC1 and ClpC2 leads to aberrant morphological changes in chloroplasts and that these changes are related to changes in the contents of major metabolites acting in cellular metabolism and biosynthetic pathways.

16.
Neural Regen Res ; 14(9): 1610-1616, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089061

RESUMO

In recent years, a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell (hUMSC) transplants for the treatment of ischemic cerebral infarction. These genes are involved in various biochemical processes, but the role of microRNAs (miRNAs) in this process is still unclear. From the Gene Expression Omnibus (GEO) database, we downloaded two microarray datasets for GSE78731 (messenger RNA (mRNA) profile) and GSE97532 (miRNA profile). The differentially expressed genes screened were compared between the hUMSC group and the middle cerebral artery occlusion group. Gene ontology enrichment and pathway enrichment analyses were subsequently conducted using the online Database for Annotation, Visualization, and Integrated Discovery. Identified genes were applied to perform weighted gene co-suppression analyses, to establish a weighted co-expression network model. Furthermore, the protein-protein interaction network for differentially expressed genes from turquoise modules was built using Cytoscape (version 3.40) and the most highly correlated subnetwork was extracted from the protein-protein interaction network using the MCODE plugin. The predicted target genes for differentially expressed miRNAs were also identified using the online database starBase v3.0. A total of 3698 differentially expressed genes were identified. Gene ontology analysis demonstrated that differentially expressed genes that are related to hUMSC treatment of ischemic cerebral infarction are involved in endocytosis and inflammatory responses. We identified 12 differentially expressed miRNAs in middle cerebral artery occlusion rats after hUMSC treatment, and these differentially expressed miRNAs were mainly involved in signaling in inflammatory pathways, such as in the regulation of neutrophil migration. In conclusion, we have identified a number of differentially expressed genes and differentially expressed mRNAs, miRNA-mRNAs, and signaling pathways involved in the hUMSC treatment of ischemic cerebral infarction. Bioinformatics and interaction analyses can provide novel clues for further research into hUMSC treatment of ischemic cerebral infarction.

17.
Front Plant Sci ; 9: 1423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374361

RESUMO

Sulfite reductase (SIR) is a key enzyme in higher plants in the assimilatory sulfate reduction pathway. SIR, being exclusively localized in plastids, catalyzes the reduction of sulfite (SO3 2-) to sulfide (S2-) and is essential for plant life. We characterized transgenic plants leading to co-suppression of the SIR gene in tobacco (Nicotiana tabacum cv. Samsun NN). Co-suppression resulted in reduced but not completely extinguished expression of SIR and in a reduction of SIR activity to about 20-50% of the activity in control plants. The reduction of SIR activity caused chlorotic and necrotic phenotypes in tobacco leaves, but with varying phenotype strength even among clones and increasing from young to old leaves. In transgenic plants compared to control plants, metabolite levels upstream of SIR accumulated, such as sulfite, sulfate and thiosulfate. The levels of downstream metabolites were reduced, such as cysteine, glutathione (GSH) and methionine. This metabolic signature resembles a sulfate deprivation phenotype as corroborated by the fact that O-acetylserine (OAS) accumulated. Further, chlorophyll contents, photosynthetic electron transport, and the contents of carbohydrates such as starch, sucrose, fructose, and glucose were reduced. Amino acid compositions were altered in a complex manner due to the reduction of contents of cysteine, and to some extent methionine. Interestingly, sulfide levels remained constant indicating that sulfide homeostasis is crucial for plant performance and survival. Additionally, this allows concluding that sulfide does not act as a signal in this context to control sulfate uptake and assimilation. The accumulation of upstream compounds hints at detoxification mechanisms and, additionally, a control exerted by the downstream metabolites on the sulfate uptake and assimilation system. Co-suppression lines showed increased sensitivity to additionally imposed stresses probably due to the accumulation of reactive compounds because of insufficient detoxification in combination with reduced GSH levels.

18.
Plant Physiol Biochem ; 127: 143-151, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29579641

RESUMO

Previously we described flax plants with expression of Arabidopsis lycopene ß-cyclase (lcb) gene in which decreased expression of the endogenous lcb and increased resistance to fungal pathogen was observed. We suggested that co-suppression was responsible for the change. In this study we investigated the molecular basis of the observed effect in detail. We found that methylation changes in the Lulcb gene body might be responsible for repression of the gene. Treatment with azacitidine (DNA methylation inhibitor) confirmed the results. Moreover, we studied how the manipulation of carotenoid biosynthesis pathway increased ABA level in these plants. We suggest that elevated ABA levels may be responsible for the increased resistance of the flax plants to pathogen infection through activation of chitinase (PR gene).


Assuntos
Ácido Abscísico , Metilação de DNA , DNA de Plantas , Linho , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Liases Intramoleculares , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Linho/enzimologia , Linho/genética , Liases Intramoleculares/biossíntese , Liases Intramoleculares/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
19.
Plant Sci ; 225: 138-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017169

RESUMO

RNA silencing plays important roles in the regulation of gene expression in eukaryotes. We previously reported that RNA silencing of a linked endogenous gene and a transgene in transgenic rice seeds can be induced by the expression of foreign recombinant mGLP-1, which acts as a silencing-inducible sequence through RNA interference. In this study, we found that the induction of RNA silencing by foreign transgenes is not restricted to mGLP-1 but is observed in many other genes as a relatively general phenomenon, as several foreign genes were involved in inducing RNA silencing in the same manner as mGLP-1 in transgenic rice. We detected 21-24-nt siRNAs using both sense and antisense probes specific to the silenced genes in both the leaves and endosperm of transgenic rice plants. Moreover, read-through transcripts were consistently observed in silenced transgenic rice plants. Taken together, these results suggest that proper transcription termination was prevented in these plants, and the highly divergent 3'-end transcripts served as templates for double-stranded RNA synthesis, resulting in the degradation of the target genes via siRNA.


Assuntos
Genes de Plantas , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/genética , Endosperma , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Peptídeo 1 Semelhante ao Glucagon/genética , Oryza/metabolismo , Folhas de Planta , Plantas Geneticamente Modificadas/metabolismo , RNA Antissenso , RNA de Cadeia Dupla , RNA Mensageiro , Proteínas Recombinantes/metabolismo , Sementes , Transcrição Gênica , Transgenes
20.
Int J Biochem Mol Biol ; 5(1): 11-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955284

RESUMO

Ectopic expression of multi-transgenic copies can result in reduced expression of the transgene and can induce silence of endogenous gene; this process is called as co-suppression. Using a transgene-mediated co-suppression technique, we demonstrated the biological function of DNA topoisomerase-1 (top-1) in C. elegans development. Introduction of full-length top-1 transgene sufficiently induced the co-suppression of endogenous top-1 gene, causing embryonic lethality and abnormal germline development. We also found that the co-suppression of top-1 gene affected morphogenesis, lifespan and larval growth that were not observed in top-1 (RNAi) animals. Strikingly, co-suppression effects were significantly reduced by the elimination of top-1 introns, suggesting that efficient co-suppression may require intron(s) in C. elegans. Sequence analysis revealed that the introns 1 and 2 of top-1 gene possess consensus binding sites for several transcription factors, including MAB-3, LIN-14, TTX-3/CEH-10, CEH-1, and CEH-22. Among them, we examined a genetic link between ceh-22 and top-1. The ceh-22 is partially required for the specification of distal tip cells (DTC), which functions as a stem cell niche in the C. elegans gonad. Intriguingly, top-1 (RNAi) significantly enhanced DTC loss in ceh-22 mutant gonads, indicating that top-1 may play an important role in CEH-22-mediated DTC fate specification. Therefore, our findings suggest that transgene-mediated co-suppression facilitates the silencing of the specific genes and the study of gene function in vivo.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa