Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genes Dev ; 32(23-24): 1562-1575, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478249

RESUMO

Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos/fisiologia , Chaperonas Moleculares/genética , Ligação Proteica , Transdução de Sinais/genética , Tela Subcutânea/fisiologia , Ativação Transcricional/genética
2.
Genes Dev ; 30(9): 1047-57, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125673

RESUMO

Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Alimentos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Insulina/genética , Longevidade/genética , Hormônios Peptídicos/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinais (Psicologia) , Meio Ambiente , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Optogenética , Hormônios Peptídicos/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
3.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063027

RESUMO

Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS) pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic Ras mutations.


Assuntos
Antineoplásicos , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fatores de Transcrição Forkhead , Quinoxalinas , Transdução de Sinais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Animais , Quinoxalinas/farmacologia , Quinoxalinas/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Longevidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Imidazóis/farmacologia , Imidazóis/química , Animais Geneticamente Modificados
4.
Plant Foods Hum Nutr ; 77(1): 30-36, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35119578

RESUMO

In this study, capsaicin-glucoside and dihydro-capsaicin-glucoside derived from fresh hot-red pepper were isolated and identified using UPLC-ESI-Q-TOF-MS/PDA. Synchronized worms were treated with capsaicinoid-glucosides (CG), and then lifespan and stress resistance were examined. The 50 µg/ml concentration of CG-intake could effectively protect the Caenorhabditis elegans (C. elegans) against stresses factors including oxidation and heat as well as reactive oxygen species (ROS), thereby enhancing the survival of CG-treated worms under stress. Enhancing stress resistance in CG-treated worms could be due to the increased expressions of stress-related genes in C. elegans such as daf-16, skn-1 and their downstream target genes (sod-3, hsp-16.2, gst-4 and gcs-1). Lifespan study of different C. elegans strains and RT-PCR showed that the CG-mediated lifespan extension was dependent on DAF-16/FOXO and SKN-1/Nrf2 transcription factors. The study is a step forward in exploring the stress resistance and anti-aging properties of this beneficial extract. Thus, this study will be useful in formulating remedies for stresses factors and age associated disorders.


Assuntos
Proteínas de Caenorhabditis elegans , Capsicum , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Capsaicina/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucosídeos , Longevidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Ecotoxicol Environ Saf ; 225: 112793, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544019

RESUMO

Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.


Assuntos
Caenorhabditis elegans , Biologia de Sistemas , Animais , Caenorhabditis elegans/genética , Células Germinativas , Humanos , Radiação Ionizante , Análise de Sistemas
6.
Biogerontology ; 20(5): 665-676, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332584

RESUMO

Liangyi Gao (LYG), a traditional Chinese medicine, is composed of Ginseng and Radix Rehmanniae Preparata, both of which have been shown to have antiaging properties. In Eastern countries, LYG is used to delay functional declines related to aging and has an obvious antiaging effect in clinical practice. However, little data from evidence-based medicine is available regarding whether LYG is beneficial overall, particularly with respect to lifespan, and how LYG functions. To address these issues, Caenorhabditis elegans, a useful organism for such studies, was employed to explore the antiaging effect and mechanism of LYG in this study. The results showed that LYG could obviously extend lifespan and slow aging-related declines in N2 wild-type C. elegans. To further characterize these antiaging effects and stress resistance, reproductive tests and other aging-related tests were performed. We found that LYG enhanced resistance against oxidative and thermal stress, reproduction, pharynx pumping, motility and growth in N2 wild-type C. elegans. In addition, we analyzed the mechanism for these effects by measuring the activity of superoxide dismutase (SOD) and the expression levels of aging-related genes. We found that LYG enhanced the activities of antioxidant enzymes and upregulated the genes daf-16, sod-3 and sir-2.1, which mediated stress resistance and longevity. In conclusion, LYG had robust and reproducible life-prolonging and antiaging benefits in C. elegans via DAF-16/FOXO regulation.


Assuntos
Envelhecimento/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade , Estresse Oxidativo/efeitos dos fármacos , Panax , Rehmannia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caenorhabditis elegans , Medicamentos de Ervas Chinesas/farmacologia , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Modelos Animais , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Regulação para Cima
7.
Mar Drugs ; 16(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423886

RESUMO

The hard clam Meretrix meretrix, which has been traditionally used as medicine and seafood, was used in this study to isolate antioxidant peptides. First, a peptide-rich extract was tested for its protective effect against paraquat-induced oxidative stress using the nematode model Caenorhabditis elegans. Then, three novel antioxidant peptides; MmP4 (LSDRLEETGGASS), MmP11 (KEGCREPETEKGHR) and MmP19 (IVTNWDDMEK), were identified and were found to increase the resistance of nematodes against paraquat. Circular dichroism spectroscopy revealed that MmP4 was predominantly in beta-sheet conformation, while MmP11 and MmP19 were primarily in random coil conformation. Using transgenic nematode models, the peptides were shown to promote nuclear translocation of the DAF-16/FOXO transcription factor, a pivotal regulator of stress response and lifespan, and induce the expression of superoxide dismutase 3 (SOD-3), an antioxidant enzyme. Analysis of DAF-16 target genes by real-time PCR reveals that sod-3 was up-regulated by MmP4, MmP11 and MmP19 while ctl-1 and ctl-2 were also up-regulated by MmP4. Further examination of daf-16 using RNA interference suggests that the peptide-increased resistance of C. elegans to oxidative stress was DAF-16 dependent. Taken together, these data demonstrate the antioxidant activity of M. meretrix peptides, which are associated with activation of the stress response factor DAF-16 and regulation of the antioxidant enzyme genes.


Assuntos
Antioxidantes/farmacologia , Fatores Biológicos/farmacologia , Bivalves/metabolismo , Caenorhabditis elegans/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bioensaio/métodos , Fatores Biológicos/química , Fatores Biológicos/isolamento & purificação , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Animais , Estresse Oxidativo/genética , Paraquat/toxicidade , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874838

RESUMO

Genetic studies have elucidated mechanisms that regulate aging; however, there has been little progress in identifying drugs that retard ageing. Caenorhabditis elegans is among the classical model organisms in ageing research. Methyl 3,4-dihydroxybenzoate (MDHB) can prolong the life-span of C. elegans, but the underlying molecular mechanisms are not yet fully understood. Here, we report that MDHB prolongs the life-span of C. elegans and delays age-associated declines of physiological processes. Besides, MDHB can lengthen the life-span of eat-2 (ad1113) mutations, revealing that MDHB does not work via caloric restriction (CR). Surprisingly, the life-span⁻extending activity of MDHB is completely abolished in daf-2 (e1370) mutations, which suggests that daf-2 is crucial for a MDHB-induced pro-longevity effect in C. elegans. Moreover, MDHB enhances the nuclear localization of daf-16/FoxO, and then modulates the expressions of genes that positively correlate with defenses against stress and longevity in C. elegans. Therefore, our results indicate that MDHB at least partially acts as a modulator of the daf-2/daf-16 pathway to extend the lifespan of C. elegans, and MDHB might be a promising therapeutic agent for age-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Hidroxibenzoatos/farmacologia , Longevidade/genética , Receptor de Insulina/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Restrição Calórica , Humanos , Longevidade/efeitos dos fármacos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
9.
Ann Bot ; 119(5): 775-789, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087659

RESUMO

BACKGROUND: Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE: Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION: DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.


Assuntos
Proteínas de Helminto/genética , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Fatores de Transcrição/genética , Animais , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Nematoides/genética , Plantas/parasitologia , Fatores de Transcrição/metabolismo
10.
Antioxidants (Basel) ; 13(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39199191

RESUMO

As a significant global issue, aging is prompting people's interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific anti-aging components and mechanisms of A. roxburghii remain unclear. This study aims to investigate the anti-aging effects and mechanisms of A. roxburghii extract E (ARE). Caenorhabditis elegans (C. elegans) were exposed to media containing different concentrations of ARE whose superior in vitro radical scavenging capacity was thus identified. Lifespan assays, stress resistance tests, and RT-qPCR analyses were conducted to evaluate anti-aging efficacy, reactive oxygen species (ROS) levels, antioxidant enzyme activity, and daf-16, sod-3, and gst-4 levels. Additionally, transcriptomic and metabolomic analyses were performed to elucidate the potential anti-aging mechanisms of ARE. Fluorescence protein assays and gene knockout experiments were employed to validate the impacts of ARE on anti-aging mechanisms. Our results revealed that ARE not only prolonged the lifespan of C. elegans but also mitigated ROS and lipofuscin accumulation, and boosted resistance to UV and heat stress. Furthermore, ARE modulated the expression of pivotal anti-aging genes including daf-16, sod-3, and gst-4, facilitating the nuclear translocation of DAF-16. Significantly, ARE failed to extend the lifespan of daf-16-deficient C. elegans (CF1038), indicating its dependency on the daf-16/FoxO signaling pathway. These results underscored the effectiveness of ARE as a natural agent for enhancing longevity and stress resilience to C. elegans, potentially to human.

11.
Biomed Pharmacother ; 157: 113924, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36450213

RESUMO

Oxidative stress disrupts the homeostasis of the redox state in cells and induces apoptosis. Prolonged oxidative stress can impair the normal function of cells, tissues, and organs and lead to the development of several diseases. H-2 was synthesized by derivatising N-Alkylamides (NAAs) from Anacyclus pyrethrum (L.) DC, which is commonly used in the treatment of vitiligo in Uyghurs. The antioxidant activity and potential molecular mechanisms of H-2 were investigated using Caenorhabditis elegans (C. elegans) and mouse melanoma cell B16-F10 models. The in vivo anti-vitiligo activity of H-2 was studied using C57BL/6 mice. The results showed that H-2 could increase the survival time of nematodes under oxidative stress, promote the nuclear localization of DAF-16, and enhance the expression of Superoxide Dismutase 3 (SOD-3) in nematodes thereby activating the antioxidant enzyme system. H-2 could affect the survival rate of age-1 and akt-1 mutants under oxidative stress. H-2 could reverse the oxidative stress damage by reducing the reactive oxygen species (ROS) content in the Hydrogen peroxide (H2O2) -induced oxidative stress damage model of mouse melanoma cells B16-F10. In addition, it was also able to increase the number of melanocytes in the hair follicles of vitiligo model mice and improve the phenomenon of skin damage in mice. In conclusion, our findings suggest that H-2 can alleviate oxidative stress damage in C. elegans and B16-F10, which may be associated with oxidative stress, suppression of antioxidant defences, and transcription factors DAF-16/FOXO, providing beneficial evidence for the application of H-2 in the vitiligo treatment.


Assuntos
Proteínas de Caenorhabditis elegans , Melanoma , Animais , Camundongos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Peróxido de Hidrogênio/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Aging Cell ; 22(3): e13762, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794357

RESUMO

The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7. We found that tbc-2 mutants have decreased nuclear localization of DAF-16 in response to heat stress, anoxia, and bacterial pathogen stress, but increased nuclear localization of DAF-16 in response to chronic oxidative stress and osmotic stress. tbc-2 mutants also exhibit decreased upregulation of DAF-16 target genes in response to stress. To determine whether the rate of nuclear localization of DAF-16 affected stress resistance in these animals, we examined survival after exposure to multiple exogenous stressors. Disruption of tbc-2 decreased resistance to heat stress, anoxia, and bacterial pathogen stress in both wild-type worms and stress-resistant daf-2 insulin/IGF-1 receptor mutants. Similarly, deletion of tbc-2 decreases lifespan in both wild-type worms and daf-2 mutants. When DAF-16 is absent, the loss of tbc-2 is still able to decrease lifespan but has little or no impact on resistance to most stresses. Combined, this suggests that disruption of tbc-2 affects lifespan through both DAF-16-dependent and DAF-16-independent pathways, while the effect of tbc-2 deletion on resistance to stress is primarily DAF-16-dependent. Overall, this work demonstrates the importance of endosomal trafficking for the proper nuclear localization of DAF-16 during stress and that perturbation of normal endosomal trafficking is sufficient to decrease both stress resistance and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Longevidade/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , Insulina/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
13.
Aging Cell ; 22(2): e13740, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36514863

RESUMO

Mutations that extend lifespan are associated with enhanced resistance to stress. To better understand the molecular mechanisms underlying this relationship, we directly compared lifespan extension, resistance to external stressors, and gene expression in a panel of nine long-lived Caenorhabditis elegans mutants from different pathways of lifespan extension. All of the examined long-lived mutants exhibited increased resistance to one or more types of stress. Resistance to each of the examined types of stress had a significant, positive correlation with lifespan, with bacterial pathogen resistance showing the strongest relationship. Analysis of transcriptional changes indicated that all of the examined long-lived mutants showed a significant upregulation of multiple stress response pathways. Interestingly, there was a very significant overlap between genes highly correlated with stress resistance and genes highly correlated with longevity, suggesting that the same genetic pathways drive both phenotypes. This was especially true for genes correlated with bacterial pathogen resistance, which showed an 84% overlap with genes correlated with lifespan. To further explore the relationship between innate immunity and longevity, we disrupted the p38-mediated innate immune signaling pathway in each of the long-lived mutants and found that this pathway is required for lifespan extension in eight of nine mutants. Overall, our results demonstrate a strong correlation between stress resistance and longevity that results from the high degree of overlap in genes contributing to each phenotype. Moreover, these findings demonstrate the importance of the innate immune system in lifespan determination and indicate that the same underlying genes drive both immunity and longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Longevidade/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , Caenorhabditis elegans/fisiologia , Imunidade Inata/genética , Fatores de Transcrição Forkhead/metabolismo
14.
Cells ; 12(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566010

RESUMO

The human lifespan has increased over the past century; however, healthspans have not kept up with this trend, especially cognitive health. Among nutrients for brain function maintenance, long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFA): DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) must be highlighted, particularly structured forms of EPA and DHA which were developed to improve bioavailability and bioactivity in comparison with conventional ω-3 supplements. This study aims to elucidate the effect of a structured triglyceride form of DHA (DHA-TG) on the healthspan of aged C. elegans. Using a thrashing assay, the nematodes were monitored at 4, 8, and 12 days of adulthood, and DHA-TG improved its motility at every age without affecting lifespan. In addition, the treatment promoted antioxidant capacity by enhancing the activity and expression of SOD (superoxide dismutase) in the nematodes. Lastly, as the effect of DHA-TG was lost in the DAF-16 mutant strain, it might be hypothesized that the effects of DHA need DAF-16/FOXO as an intermediary. In brief, DHA-TG exerted a healthspan-promoting effect resulting in both enhanced physical fitness and increased antioxidant defense in aged C. elegans. For the first time, an improvement in locomotive function in aged wild-type nematodes is described following DHA-TG treatment.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Animais , Adulto , Idoso , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Antioxidantes/farmacologia , Caenorhabditis elegans/metabolismo , Triglicerídeos
15.
Metabolites ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837843

RESUMO

To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were chlorogenic acid (CA), linarin (LIN), and pectolinarin (PLIN) by HPLC analysis. As a result of the antioxidant activity of CJ and its phenolics by DPPH and ABTS method, CA had shown the greatest antioxidant activity. We employed Caenorhabditis elegans to validate that in vitro effects of CA are shown in vivo. CA delayed reduction in pumping rate and progeny production during aging of C. elegans. Under both normal and oxidative stress conditions, CA reduced the production of reactive oxygen species (ROS) in worms and increased their lifespan. In particular, CA showed the reducing effect of ROS accumulation due to aging in aged worms (8 days old). To gain insight into the mechanism, we used skn-1/Nrf2 and daf-16/FOXO transformed worms. The CA effects (on catalase activity and lifespan extension) in the wild-type (WT) decreased in skn-1 and daf-16 mutants. In particular, CA strongly relied on daf-16 under mild oxidative condition and skn-1 under overall (from mild to strong) oxidative stress to reduce ROS and extend healthspan. Thus, we conclude that CA, a key bioactive phenolic of CJ, reduces ROS production and ultimately extends healthspan, and this effect is the result of actions of daf-16 or skn-1 at different stages depending on the degree of oxidation or aging. Our results suggest that CJ containing CA can be used as an antiaging material due to its antioxidant properties.

16.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(2): 199-205, 2023 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-36946038

RESUMO

OBJECTIVE: To study the protective effect of forsythiaside B (FB) against cerebral oxidative stress injury induced by cerebral ischemia/reperfusion (I/R) in mice and explore the underlying mechanism. METHODS: Ninety C57BL/6 mice were randomized into sham-operated group, middle cerebral artery occlusion (MCAO) model group, and low-, medium and highdose (10, 20, and 40 mg/kg, respectively) FB groups. The expression levels of MDA, ROS, PCO, 8-OHdG, SOD, GSTα4, CAT and GPx in the brain tissue of the mice were detected using commercial kits, and those of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 were detected with Western blotting. Compound C (CC), an AMPK inhibitor, was used to verify the role of the AMPK pathway in mediating the therapeutic effect of FB. In another 36 C57BL/6 mice randomized into 4 sham-operated group, MCAO model group, FB (40 mg/kg) treatment group, FB+CC (10 mg/kg) treatment group, TTC staining was used to examine the volume of cerebral infarcts, and the levels of ROS and SOD in the brain were detected; the changes in the protein expressions of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 in the brain tissue were detected using Western blotting. RESULTS: In mice with cerebral IR injury, treatment with FB significantly reduced the levels of ROS, MDA, PCO and 8-OHdG, increased the activities of antioxidant enzymes SOD, GSTα4, CAT and GPx, and enhanced phosphorylation of AMPK and FOXO3 and DAF-16 protein expression in the brain tissue (P < 0.01). Compared with FB treatment alone, the combined treatment with FB and CC significantly reduced phosphorylation of AMPK and FOXO3, lowered expression of DAF-16 and SOD activity, and increased cerebral infarction volume and ROS level in the brain tissue of the mice (P < 0.01). CONCLUSION: FB inhibits oxidative stress injury caused by cerebral I/R in mice possibly by enhancing AMPK phosphorylation, promoting the downstream DAF-16 protein expression and FOXO3 phosphorylation, increasing the expression of antioxidant enzymes, and reducing ROS level in the brain tissue.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Infarto da Artéria Cerebral Média , Reperfusão , Superóxido Dismutase/metabolismo
17.
Foods ; 11(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681340

RESUMO

For this investigation, Caenorhabditis elegans (C. elegans) served, for the first time, as a model organism to evaluate the toxic effect and possible underlying mechanisms under acrolein (ACR) exposure. The results showed that ACR exposure (12.5-100 µM) shortened the lifespan of C. elegans. The reproductive capacity, body length, body width, and locomotive behavior (head thrash) of C. elegans were diminished by ACR, especially the doses of 50 and 100 µM. Furthermore, ACR significantly enhanced the endogenous ROS levels of C. elegans, inhibited the antioxidant-related enzyme activities, and affected the expression of antioxidant related genes. The increasing oxidative stress level promoted the migration of DAF-16 into the nucleus that was related to the DAF-16/FOXO pathway. It was also confirmed by the significant decrease of the lifespan-shortening trend in the daf-16 knockout mutant. In conclusion, ACR exposure induced aging and oxidative stress in C.elegans, resulting in aging-related decline and defense-related DAF-16/FOXO pathways' activation.

18.
Food Chem Toxicol ; 162: 112914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35276233

RESUMO

Olive tree-derived products have been associated with numerous benefits for health. The aim of the present study was to characterize an olive leaf extract enriched in oleuropein (OLE) concerning phenolic content and profile as well as antioxidant capacity. Short-term and long-term toxicity, including oxidative stress, was in vivo evaluated in the experimental model Caenorhabditis elegans. Moreover, the potential therapeutic effect of the extract against Aß induced- and tau protein induced-toxicity was also evaluated in C. elegans. OLE treatment did not exert toxicity. On the contrary, the extract was able to ameliorate oxidative stress and proteotoxicity related to Aß and tau aggregation. The potential molecular mechanisms present behind the observed results explored by RNAi technology revealed that DAF-16/FOXO and SKN-1/NRF2, elements of the insulin insulin-like signalling pathway, as well as HSP-16.2 overexpression were involved.

19.
Front Pharmacol ; 13: 931886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071837

RESUMO

Aging is associated with the increased risk of most age-related diseases in humans. Complanatoside A (CA) is a flavonoid compound isolated from the herbal medicine Semen Astragali Complanati. CA was reported to have potential anti-inflammatory and anti-oxidative activities. In this study, we investigated whether CA could increase the stress resistance capability and life span of Caenorhabditis elegans. Our results showed that CA could extend the longevity of C. elegans in a dosage-dependent manner, while 50 µM of CA has the best effect and increased the life span of C. elegans by about 16.87%. CA also improved the physiological functions in aging worms, such as enhanced locomotor capacity, and reduced the accumulation of the aging pigment. CA could also reduce the accumulation of toxic proteins (α-synuclein and ß-amyloid) and delay the onset of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, in models of C. elegans. Further investigation has revealed that CA requires DAF-16/FOXO, SKN-1, and HSF-1 to extend the life span of C. elegans. CA could increase the antioxidation and detoxification activities regulated by transcription factor SKN-1 and the heat resistance by activating HSF-1 that mediated the expression of the chaperone heat shock proteins. Our results suggest that CA is a potential antiaging agent worth further research for its pharmacological mechanism and development for pharmaceutical applications.

20.
Mol Nutr Food Res ; 66(17): e2100845, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35413150

RESUMO

SCOPE: Vitexin and isovitexin are natural plant nutraceuticals for human health and longevity. This research investigates the underlying mechanisms of vitexin and isovitexin on aging and health. The vital role of DAF-2/insulin-like growth factor-1 receptor (IGFR) is illustrated in the insulin/insulin-like growth signaling pathway (IIS) modulated by vitexin and isovitexin. METHODS AND RESULTS: In vitro, in vivo models and molecular docking methods are performed to explore the antiaging mechanism of vitexin and isovitexin. Vitexin and isovitexin (50 and 100 µM) extended the lifespan of Caenorhabditis elegans. The declines of pharyngeal pumping and body bending rates, and the increase of intestinal lipofuscin accumulation, three markers of aging, are postponed by these compounds. They inhibit IIS pathway in a daf-16-dependent manner, subsequently increasing the expressions of DAF-16 downstream protein and gene in nematodes. Molecular docking studies demonstrate that these compounds mightinhibit insulin signal by binding to the crucial amino acid residue ARG1003 in the pocket of IGFR. Western blot indicates that IGFR, PI3K, and AKT kinase expressions in senescent cells are decreased after vitexin and isovitexin treatment. CONCLUSION: Vitexin and isovitexin may inhibit IIS pathway by occupying adenosine-triphosphate binding site pocket of IGFR, subsequently decreasing IGFR expression, thereby promoting longevity and fitness.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Apigenina , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Insulina/metabolismo , Longevidade , Simulação de Acoplamento Molecular , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa