Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.990
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(25): 4737-4755.e18, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493753

RESUMO

Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.


Assuntos
Comportamento Animal , Cães , Animais , Cães/genética , Cães/fisiologia , Variação Genética , Fenótipo , Linhagem
2.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539781

RESUMO

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Assuntos
Produtos Agrícolas/genética , Domesticação , Oryza/genética , Sistemas CRISPR-Cas , Segurança Alimentar , Edição de Genes , Variação Genética , Genoma de Planta , Oryza/classificação , Poliploidia
3.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553272

RESUMO

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático do Citocromo P-450/genética , Ecótipo , Epistasia Genética , Frutas/genética , Duplicação Gênica , Genoma de Planta , Genótipo , Endogamia , Anotação de Sequência Molecular , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
4.
Cell ; 177(6): 1419-1435.e31, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056281

RESUMO

Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.


Assuntos
Cavalos/genética , Animais , Ásia , Evolução Biológica , Cruzamento/história , DNA Antigo/análise , Domesticação , Equidae/genética , Europa (Continente) , Feminino , Variação Genética/genética , Genoma/genética , História Antiga , Masculino , Filogenia
5.
Cell ; 172(1-2): 249-261.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328914

RESUMO

Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how breeding globally altered fruit metabolite content. Selection for alleles of genes associated with larger fruits altered metabolite profiles as a consequence of linkage with nearby genes. Selection of five major loci reduced the accumulation of anti-nutritional steroidal glycoalkaloids in ripened fruits, rendering the fruit more edible. Breeding for pink tomatoes modified the content of over 100 metabolites. The introgression of resistance genes from wild relatives in cultivars also resulted in major and unexpected metabolic changes. The study reveals a multi-omics view of the metabolic breeding history of tomato, as well as provides insights into metabolome-assisted breeding and plant biology.


Assuntos
Frutas/genética , Metaboloma , Metabolômica/métodos , Melhoramento Vegetal/métodos , Solanum lycopersicum/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Seleção Artificial
6.
Cell ; 171(2): 470-480.e8, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28919077

RESUMO

Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.


Assuntos
Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta , Sistemas CRISPR-Cas , Regiões Promotoras Genéticas , Locos de Características Quantitativas
7.
Cell ; 169(6): 1142-1155.e12, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28528644

RESUMO

Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. We found branched variants carry mutations in two related transcription factors that were selected independently. One founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this suppression restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher-yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms. VIDEO ABSTRACT.


Assuntos
Epistasia Genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Domesticação , Inflorescência/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
8.
Annu Rev Genet ; 56: 63-87, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449356

RESUMO

Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.


Assuntos
Elementos de DNA Transponíveis , Epigênese Genética , Animais , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Genoma de Planta/genética , Estágios do Ciclo de Vida , Domesticação
9.
Annu Rev Genet ; 54: 563-581, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32960653

RESUMO

The domestication of the horse some 5,500 years ago followed those of dogs, sheep, goats, cattle, and pigs by ∼2,500-10,000 years. By providing fast transportation and transforming warfare, the horse had an impact on human history with no equivalent in the animal kingdom. Even though the equine sport industry has considerable economic value today, the evolutionary history underlying the emergence of the modern domestic horse remains contentious. In the last decade, novel sequencing technologies have revolutionized our capacity to sequence the complete genome of organisms, including from archaeological remains. Applied to horses, these technologies have provided unprecedented levels of information and have considerably changed models of horse domestication. This review illustrates how ancient DNA, especially ancient genomes, has inspired researchers to rethink the process by which horses were first domesticated and then diversified into a variety of breeds showing a range of traits that are useful to humans.


Assuntos
Genoma/genética , Cavalos/genética , Animais , Evolução Biológica , DNA Antigo , Domesticação , Genômica/métodos , Humanos
10.
Annu Rev Genet ; 54: 287-307, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32870731

RESUMO

Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.


Assuntos
Produtos Agrícolas/genética , Epistasia Genética/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Animais , Domesticação , Edição de Genes/métodos , Genoma de Planta/genética , Genômica/métodos , Humanos , Melhoramento Vegetal/métodos
11.
Proc Natl Acad Sci U S A ; 121(30): e2407584121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976766

RESUMO

Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.


Assuntos
Genoma , Animais , Austrália , Cães/genética , Lobos/genética , DNA Antigo/análise , Genética Populacional
12.
Proc Natl Acad Sci U S A ; 121(16): e2219055121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38536744

RESUMO

The past 15 y has seen much development in documentation of domestication of plants and animals as gradual traditions spanning millennia. There has also been considerable momentum in understanding the dispersals of major domesticated taxa across continents spanning thousands of miles. The two processes are often considered within different theoretical strains. What is missing from our repertoire of explanations is a conceptual bridge between the protracted process over millennia and the multiregional, globally dispersed nature of domestication. The evidence reviewed in this paper bears upon how we conceptualize domestication as an episode or a process. By bringing together the topics of crop domestication and crop movement, those complex, protracted, and continuous outcomes come more clearly into view.


Assuntos
Produtos Agrícolas , Domesticação , Animais , Produtos Agrícolas/genética
13.
Proc Natl Acad Sci U S A ; 121(11): e2313354121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457520

RESUMO

Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.


Assuntos
Domesticação , Saccharomycetales , Humanos , Filogenia , Saccharomycetales/genética , Metaboloma , Saccharomyces cerevisiae/genética
14.
Proc Natl Acad Sci U S A ; 121(22): e2401185121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768340

RESUMO

The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.


Assuntos
Blattellidae , Animais , Blattellidae/genética , Filogenia , Europa (Continente) , Evolução Biológica
15.
Trends Genet ; 39(5): 347-357, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997427

RESUMO

Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic drives, warrants the designation of 'genetic welding' as an anthropogenic evolutionary force. Conceptually, this distinction parallels that of artificial and natural selection. Genetic welding is capable of imposing complex and rapid heritable phenotypic change on entire populations, whether motivated by biodiversity conservation or public health. Unanticipated possible long-term evolutionary outcomes, however, demand further investigation and bioethical consideration. The emerging importance of genetic welding also compels our explicit recognition of genetic drive as an addition to the other four fundamental forces of evolution.


Assuntos
Tecnologia de Impulso Genético , Genes Sintéticos , Humanos , Seleção Genética , Alelos
16.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
17.
Proc Natl Acad Sci U S A ; 120(14): e2205769120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972445

RESUMO

Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.


Assuntos
Domesticação , Ecossistema , Humanos , Produtos Agrícolas/genética , Tecnologia , Mudança Climática
18.
Proc Natl Acad Sci U S A ; 120(4): e2209482119, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649422

RESUMO

Evidence for a reduction in stature between Mesolithic foragers and Neolithic farmers has been interpreted as reflective of declines in health, however, our current understanding of this trend fails to account for the complexity of cultural and dietary transitions or the possible causes of phenotypic change. The agricultural transition was extended in primary centers of domestication and abrupt in regions characterized by demic diffusion. In regions such as Northern Europe where foreign domesticates were difficult to establish, there is strong evidence for natural selection for lactase persistence in relation to dairying. We employ broad-scale analyses of diachronic variation in stature and body mass in the Levant, Europe, the Nile Valley, South Asia, and China, to test three hypotheses about the timing of subsistence shifts and human body size, that: 1) the adoption of agriculture led to a decrease in stature, 2) there were different trajectories in regions of in situ domestication or cultural diffusion of agriculture; and 3) increases in stature and body mass are observed in regions with evidence for selection for lactase persistence. Our results demonstrate that 1) decreases in stature preceded the origins of agriculture in some regions; 2) the Levant and China, regions of in situ domestication of species and an extended period of mixed foraging and agricultural subsistence, had stable stature and body mass over time; and 3) stature and body mass increases in Central and Northern Europe coincide with the timing of selective sweeps for lactase persistence, providing support for the "Lactase Growth Hypothesis."


Assuntos
Agricultura , Tamanho Corporal , Indústria de Laticínios , Humanos , Aceleração , Europa (Continente) , Lactase
19.
Proc Natl Acad Sci U S A ; 120(20): e2219664120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155873

RESUMO

The UN Decade on Ecosystem Restoration calls for upscaling restoration efforts, but many terrestrial restoration projects are constrained by seed availability. To overcome these constraints, wild plants are increasingly propagated on farms to produce seeds for restoration projects. During on-farm propagation, the plants face non-natural conditions with different selection pressures, and they might evolve adaptations to cultivation that parallel those of agricultural crops, which could be detrimental to restoration success. To test this, we compared traits of 19 species grown from wild-collected seeds to those from their farm-propagated offspring of up to four cultivation generations, produced by two European seed growers, in a common garden experiment. We found that some plants rapidly evolved across cultivated generations towards increased size and reproduction, lower within-species variability, and more synchronized flowering. In one species, we found evolution towards less seed shattering. These trait changes are typical signs of the crop domestication syndrome, and our study demonstrates that it can also occur during cultivation of wild plants, within only few cultivated generations. However, there was large variability between cultivation lineages, and the observed effect sizes were generally rather moderate, which suggests that the detected evolutionary changes are unlikely to compromise farm-propagated seeds for ecosystem restoration. To mitigate the potential negative effects of unintended selection, we recommend to limit the maximum number of generations the plants can be cultivated without replenishing the seed stock from new wild collections.


Assuntos
Domesticação , Ecossistema , Produtos Agrícolas/genética , Sementes/genética , Fenótipo
20.
Proc Natl Acad Sci U S A ; 120(15): e2208607120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011191

RESUMO

Humans are unique in their sophisticated culture and societal structures, their complex languages, and their extensive tool use. According to the human self-domestication hypothesis, this unique set of traits may be the result of an evolutionary process of self-induced domestication, in which humans evolved to be less aggressive and more cooperative. However, the only other species that has been argued to be self-domesticated besides humans so far is bonobos, resulting in a narrow scope for investigating this theory limited to the primate order. Here, we propose an animal model for studying self-domestication: the elephant. First, we support our hypothesis with an extensive cross-species comparison, which suggests that elephants indeed exhibit many of the features associated with self-domestication (e.g., reduced aggression, increased prosociality, extended juvenile period, increased playfulness, socially regulated cortisol levels, and complex vocal behavior). Next, we present genetic evidence to reinforce our proposal, showing that genes positively selected in elephants are enriched in pathways associated with domestication traits and include several candidate genes previously associated with domestication. We also discuss several explanations for what may have triggered a self-domestication process in the elephant lineage. Our findings support the idea that elephants, like humans and bonobos, may be self-domesticated. Since the most recent common ancestor of humans and elephants is likely the most recent common ancestor of all placental mammals, our findings have important implications for convergent evolution beyond the primate taxa, and constitute an important advance toward understanding how and why self-domestication shaped humans' unique cultural niche.


Assuntos
Elefantes , Gravidez , Animais , Humanos , Feminino , Elefantes/genética , Domesticação , Pan paniscus/genética , Placenta , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa