Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 91(12): 1889-1902, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357816

RESUMO

Estimating the accuracy of quaternary structural models of protein complexes and assemblies (EMA) is important for predicting quaternary structures and applying them to studying protein function and interaction. The pairwise similarity between structural models is proven useful for estimating the quality of protein tertiary structural models, but it has been rarely applied to predicting the quality of quaternary structural models. Moreover, the pairwise similarity approach often fails when many structural models are of low quality and similar to each other. To address the gap, we developed a hybrid method (MULTICOM_qa) combining a pairwise similarity score (PSS) and an interface contact probability score (ICPS) based on the deep learning inter-chain contact prediction for estimating protein complex model accuracy. It blindly participated in the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) in 2022 and performed very well in estimating the global structure accuracy of assembly models. The average per-target correlation coefficient between the model quality scores predicted by MULTICOM_qa and the true quality scores of the models of CASP15 assembly targets is 0.66. The average per-target ranking loss in using the predicted quality scores to rank the models is 0.14. It was able to select good models for most targets. Moreover, several key factors (i.e., target difficulty, model sampling difficulty, skewness of model quality, and similarity between good/bad models) for EMA are identified and analyzed. The results demonstrate that combining the multi-model method (PSS) with the complementary single-model method (ICPS) is a promising approach to EMA.


Assuntos
Aprendizado Profundo , Modelos Moleculares , Proteínas/química
2.
Proteins ; 90(12): 2091-2102, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35842895

RESUMO

The estimation of protein model accuracy (EMA) or model quality assessment (QA) is important for protein structure prediction. An accurate EMA algorithm can guide the refinement of models or pick the best model or best parts of models from a pool of predicted tertiary structures. We developed two novel methods: MASS2 and LAW, for predicting residue-specific or local qualities of individual models, which incorporate residual neural networks and graph neural networks, respectively. These two methods use similar features extracted from protein models but different architectures of neural networks to predict the local accuracies of single models. MASS2 and LAW participated in the QA category of CASP14, and according to our evaluations based on CASP14 official criteria, MASS2 and LAW are the best and second-best methods based on the Z-scores of ASE/100, AUC, and ULR-1.F1. We also evaluated MASS2, LAW, and the residue-specific predicted deviations (between model and native structure) generated by AlphaFold2 on CASP14 AlphaFold2 tertiary structure (TS) models. LAW achieved comparable or better performances compared to the predicted deviations generated by AlphaFold2 on AlphaFold2 TS models, even though LAW was not trained on any AlphaFold2 TS models. Specifically, LAW performed better on AUC and ULR scores, and AlphaFold2 performed better on ASE scores. This means that AlphaFold2 is better at predicting deviations, but LAW is better at classifying accurate and inaccurate residues and detecting unreliable local regions. MASS2 and LAW can be freely accessed from http://dna.cs.miami.edu/MASS2-CASP14/ and http://dna.cs.miami.edu/LAW-CASP14/, respectively.


Assuntos
Biologia Computacional , Proteínas , Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Redes Neurais de Computação , Algoritmos , Conformação Proteica
3.
Proteins ; 89(12): 1940-1948, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34324227

RESUMO

In CASP, blind testing of model accuracy estimation methods has been conducted on models submitted by tertiary structure prediction servers. In CASP14, model accuracy estimation results were evaluated in terms of both global and local structure accuracy, as in the previous CASPs. Unlike the previous CASPs that did not show pronounced improvements in performance, the best single-model method (from the Baker group) showed an improved performance in CASP14, particularly in evaluating global structure accuracy when compared to both the best single-model methods in previous CASPs and the best multi-model methods in the current CASP. Although the CASP14 experiment on model accuracy estimation did not deal with the structures generated by AlphaFold2, new challenges that have arisen due to the success of AlphaFold2 are discussed.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Software , Biologia Computacional , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína/métodos
4.
Proteins ; 87(12): 1351-1360, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436360

RESUMO

Scoring model structure is an essential component of protein structure prediction that can affect the prediction accuracy tremendously. Users of protein structure prediction results also need to score models to select the best models for their application studies. In Critical Assessment of techniques for protein Structure Prediction (CASP), model accuracy estimation methods have been tested in a blind fashion by providing models submitted by the tertiary structure prediction servers for scoring. In CASP13, model accuracy estimation results were evaluated in terms of both global and local structure accuracy. Global structure accuracy estimation was evaluated by the quality of the models selected by the global structure scores and by the absolute estimates of the global scores. Residue-wise, local structure accuracy estimations were evaluated by three different measures. A new measure introduced in CASP13 evaluates the ability to predict inaccurately modeled regions that may be improved by refinement. An intensive comparative analysis on CASP13 and the previous CASPs revealed that the tertiary structure models generated by the CASP13 servers show very distinct features. Higher consensus toward models of higher global accuracy appeared even for free modeling targets, and many models of high global accuracy were not well optimized at the atomic level. This is related to the new technology in CASP13, deep learning for tertiary contact prediction. The tertiary model structures generated by deep learning pose a new challenge for EMA (estimation of model accuracy) method developers. Model accuracy estimation itself is also an area where deep learning can potentially have an impact, although current EMA methods have not fully explored that direction.


Assuntos
Biologia Computacional , Modelos Moleculares , Conformação Proteica , Proteínas/ultraestrutura , Algoritmos , Bases de Dados de Proteínas , Aprendizado Profundo , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa