Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Comput ; 27(1): 3-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30475672

RESUMO

It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.


Assuntos
Algoritmos , Simulação por Computador , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnicas de Apoio para a Decisão , Humanos , Inquéritos e Questionários
2.
Sci Rep ; 14(1): 8363, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600138

RESUMO

A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa