Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939482

RESUMO

By adjusting the rising time in annealing ferroelectric HfO2-based films, the grain size of the film can be controlled. In this study, we found that increasing the rising time from 10 to 30 s at an annealing temperature of 700 °C in N2atmosphere resulted in improved ferroelectric switching speed. This is because the larger grain size reduces the internal resistance components, such as the grain bulk resistance and grain boundary resistance, of the HZO film. This in turn lowers the overall equivalent resistance. By minimizing the RC time constants, increasing the grain size plays a key role in improving the polarization switching speed of ferroelectric films.

2.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339471

RESUMO

The split-cylinder resonator method was adapted to measure the microwave properties (dielectric permittivity and loss tangent) of thin ferroelectric films on a dielectric substrate. The mathematical model for calculating the resonance frequency of the split-cylinder resonator was adjusted for the "ferroelectric film-substrate" structure. An approach for correcting the gap effect based on calibrating with a single-layer dielectric was introduced and used to study two-layer dielectrics. The prototype of a split-cylinder resonator designed to measure single-layer dielectric plates at a frequency of 10 GHz was presented. The resonator calibration was performed using dielectric PTFE samples and fused silica, and an example of the correction function was suggested. The measurement error was estimated, and recommendations on the acceptable parameter range for the material under investigation were provided. The method was demonstrated to measure the microwave properties of a ferroelectric film on a fused silica substrate.

3.
Nano Lett ; 17(3): 1949-1955, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28231005

RESUMO

Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing ( Li et al. Sci. Rep. 2014 , 4 , 4096 ). Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr0.52Ti0.48O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT (thickness of ∼4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (107) and low energy consumption (potentiation energy consumption = ∼22 aJ and depression energy consumption = ∼2.5 pJ). In addition, the simple alignment of the downward polarization in PZT selectively activates the synaptic plasticity of the FTJ and the transition from short-term plasticity to long-term potentiation.

4.
Nano Lett ; 16(6): 3911-8, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27195918

RESUMO

Ferroelectric tunnel junctions (FTJs) have attracted increasing research interest as a promising candidate for nonvolatile memories. Recently, significant enhancements of tunneling electroresistance (TER) have been realized through modifications of electrode materials. However, direct control of the FTJ performance through modifying the tunneling barrier has not been adequately explored. Here, adding a new direction to FTJ research, we fabricated FTJs with BaTiO3 single barriers (SB-FTJs) and BaTiO3/SrTiO3 composite barriers (CB-FTJs) and reported a systematic study of FTJ performances by varying the barrier thicknesses and compositions. For the SB-FTJs, the TER is limited by pronounced leakage current for ultrathin barriers and extremely small tunneling current for thick barriers. For the CB-FTJs, the extra SrTiO3 barrier provides an additional degree of freedom to modulate the barrier potential and tunneling behavior. The resultant high tunability can be utilized to overcome the barrier thickness limits and enhance the overall CB-FTJ performances beyond those of SB-FTJ. Our results reveal a new paradigm to manipulate the FTJs through designing multilayer tunneling barriers with hybrid functionalities.

5.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470763

RESUMO

Integration and miniaturization are the inevitable trends in the development of electronic devices. PZT and graphene are typical ferroelectric and carbon-based materials, respectively, which have been widely used in various fields. Achieving high-quality PZT/graphene heterogeneous integration and systematically studying its electrical properties is of great significance. In this work, we reported the characterization of a PZT film based on the sol-gel method. Additionally, the thickness of the PZT film was pushed to the limit size (~100 nm) by optimizing the process. The test results, including the remnant and leakage current, show that the PZT film is a reliable and suitable platform for further graphene-integrated applications. The non-destructive regulation of the electrical properties of graphene has been studied based on a domain-polarized substrate and strain-polarized substrate. The domain structures in the PZT film exhibit different geometric structures with ~0.3 V surface potential. The I-V output curves of graphene integrated on the surface of the PZT film exhibited obvious rectification characteristics because of p/n-doping tuned by an interfacial polarized electric field. In contrast, a ~100 nm thick PZT film makes it easy to acquire a larger strain gradient for flexural potential. The tested results also show a rectification phenomenon, which is similar to domain polarization substrate regulation. Considering the difficulty of measuring the flexural potential, the work might provide a new approach to assessing the flexural polarized regulation effect. A thinner ferroelectric film/graphene heterojunction and the polarized regulation of graphene will provide a platform for promoting low-dimension film-integrated applications.

6.
Materials (Basel) ; 16(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241425

RESUMO

In this work, we explored the potential of the ferroelectric gate of (Pb0.92La0.08)(Zr0.30Ti0.70)O3 (PLZT(8/30/70)) for flexible graphene field effect transistor (GFET) devices. Based on the deep understanding of the VDirac of PLZT(8/30/70) gate GFET, which determines the application of the flexible GFET devices, the polarization mechanisms of PLZT(8/30/70) under bending deformation were analyzed. It was found that both flexoelectric polarization and piezoelectric polarization exist under bending deformation, and their polarization direction is opposite under the same bending deformation. Thus, a relatively stable of VDirac is obtained due to the combination of these two effects. In contrast to the relatively good linear movement of VDirac under bending deformation of relaxor ferroelectric (Pb0.92La0.08)(Zr0.52Ti0.48)O3 (PLZT(8/52/48)) gated GFET, these stable properties of the PLZT(8/30/70) gate GFETs make them have great potential for applications in flexible devices.

7.
Natl Sci Rev ; 10(7): nwad061, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37600562

RESUMO

Molecular ferroelectrics that have excellent ferroelectric properties, a low processing temperature, narrow bandgap, and which are lightweight, have shown great potential in the photovoltaic field. However, two-dimensional (2D) perovskite solar cells with high tunability, excellent photo-physical properties and superior long-term stability are limited by poor out-of-plane conductivity from intrinsic multi-quantum-well electronic structures. This work uses 2D molecular ferroelectric film as the absorbing layer to break the limit of multiple quantum wells. Our 2D ferroelectric solar cells achieve the highest open-circuit voltage (1.29 V) and the best efficiency (3.71%) among the 2D (n = 1) Ruddlesden-Popper perovskite solar cells due to the enhanced out-of-plane charge transport induced by molecular ferroelectrics with a strong saturation polarization, high Curie temperature and multiaxial characteristics. This work aims to break the inefficient out-of-plane charge transport caused by the limit of the multi-quantum-well electronic structure and improve the efficiency of 2D ferroelectric solar cells.

8.
Adv Mater ; 35(47): e2301705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683840

RESUMO

Self-powered photodetectors (PDs) have the advantages of no external power requirement, wireless operation, and long life. Spontaneous ferroelectric polarizations can significantly increase built-in electric field intensity, showing great potential in self-powered photodetection. Moreover, ferroelectrics possess pyroelectric and piezoelectric properties, beneficial for enhancing self-powered PDs. 2D metal halide perovskites (MHPs), which have ferroelectric properties, are suitable for fabricating high-performance self-powered PDs. However, the research on 2D metal halide perovskites ferroelectrics focuses on growing bulk crystals. Herein, 2D ferroelectric perovskite films with mixed spacer cations for self-powered PDs are demonstrated by mixing Ruddlesden-Popper (RP)-type and Dion-Jacobson (DJ)-type perovskite. The (BDA0.7 (BA2 )0.3 )(EA)2 Pb3 Br10 film possesses, overall, the best film qualities with the best crystalline quality, lowest trap density, good phase purity, and obvious ferroelectricity. Based on the ferro-pyro-phototronic effect, the PD at 360 nm exhibits excellent photoelectric properties, with an ultrahigh peak responsivity greater than 93 A W-1 and a detectivity of 2.5 × 1015 Jones, together with excellent reproducibility and stability. The maximum responsivities can be modulated by piezo-phototronic effect with an effective enhancement ratio of 480%. This work will open up a new route of designing MHP ferroelectric films for high-performance PDs and offers the opportunity to utilize it for various optoelectronics applications.

9.
ACS Appl Mater Interfaces ; 15(13): 16910-16917, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967661

RESUMO

Nonvolatile memory (NVM) devices based on two-dimensional (2D) materials have recently attracted widespread attention due to their high-density integration potential and the ability to be applied in computing-in-memory systems in the post-Moore era. Considering the high current on/off ratio, programmable threshold voltage, nonvolatile multilevel memory state, and extended logic functions, plenty of breakthroughs related to ferroelectric field-effect transistors (FeFETs), one of the most important NVM devices, have been made in the past decade. Among them, FETs coupled with organic ferroelectric films such as P(VDF-TrFE) displayed properties of remarkable robustness, easy preparation, and low cost. However, the dipoles of the P(VDF-TrFE) film cannot be flipped smoothly at low voltage, impeding the further application of organic FeFET. In this paper, we proposed a high-performance FeFET based on monolayer MoS2 coupled with C60 doped ferroelectric copolymer P(VDF-TrFE). The inserted C60 molecules enhanced the alignment of the dipoles effectively at low voltage, allowing the modified device to demonstrate a large memory window (∼16 V), high current on/off ratio (>106), long retention time (>10 000 s), and remarkable endurance under the reduced operating voltage. In addition, the in situ logic application can be realized by constructing facile device interconnection without building complex complementary semiconductor circuits. Our results are expected to pave the way for future low-consumption computing-in-memory applications based on high-quality 2D FeFETs.

10.
Materials (Basel) ; 16(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37512444

RESUMO

Porous ferroelectric lead zirconate titanate (PZT) films are a promising material for various electronic applications. This study focuses on understanding how the structure-directing agent, polyvinylpyrrolidone, can alter the structure and electrical properties of porous PZT films prepared through chemical solution deposition. Films with various porosities of up to ~40 vol.% and pore connectivities from 3-0 to 3-3 were prepared and studied by capacitance-voltage, dielectric hysteresis, transient current, photocurrent, and local current techniques. We have found that a linear decrease in material volume in a porous film is not the only factor that determines film properties. The creation of new internal grain boundaries plays a key role in changing electrical properties. This research expands the understanding of physical phenomena in porous ferroelectric films and may facilitate the development of new materials and devices.

11.
ACS Appl Mater Interfaces ; 15(36): 42764-42773, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655492

RESUMO

The emergence of complementary metal-oxide semiconductor (CMOS)-compatible HfO2-based ferroelectric materials provides a promising way to achieve ferroelectric field-effect transistors (FeFETs) with a steep subthreshold swing (SS) reduced to below the Boltzmann thermodynamics limit (∼60 mV/dec at room temperature), which has important implications for lowering power consumption. In this work, a metal-oxide-semiconductor field-effect transistor (MOSFET) is connected with Hf0.5Zr0.5O2 (HZO)-based ferroelectric capacitors with different capacitances. By adjusting the capacitance of ferroelectric capacitors, an ultralow SS of ∼0.34 mV/dec in HfO2-based FeFETs can be achieved. More interestingly, by designing the sweeping voltage sequences, the SS can be adjusted to be 0 mV/dec with the drain current ranging over six orders of magnitude, and the threshold voltage for turning on the MOSFET can be further reduced. The manipulated SS could be attributed to the evolution of ferroelectric switching. Our work contributes to understanding the origin of ultralow SS in ferroelectric MOSFETs and the realization of low-power devices.

12.
Materials (Basel) ; 16(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903182

RESUMO

In our recently published paper (Y.-Y. Wang et al., High performance LaNiO3-buffered, (001)-oriented PZT piezoelectric films integrated on (111) Si, Appl. Phys. Lett. 121, 182902, 2022), highly (001)-oriented PZT films with a large transverse piezoelectric coefficient e31,f prepared on (111) Si substrates were reported. This work is beneficial for the development of piezoelectric micro-electro-mechanical systems (Piezo-MEMS) because of (111) Si's isotropic mechanical properties and desirable etching characteristics. However, the underlying mechanism for the achievement of a high piezoelectric performance in these PZT films going through a rapid thermal annealing process has not been thoroughly analyzed. In this work, we present complete sets of data in microstructure (XRD, SEM and TEM) and electrical properties (ferroelectric, dielectric and piezoelectric) for these films with typical annealing times of 2, 5, 10 and 15 min. Through data analyses, we revealed competing effects in tuning the electrical properties of these PZT films, i.e., the removal of residual PbO and proliferation of nanopores with an increasing annealing time. The latter turned out to be the dominating factor for a deteriorated piezoelectric performance. Therefore, the PZT film with the shortest annealing time of 2 min showed the largest e31,f piezoelectric coefficient. Furthermore, the performance degradation occurred in the PZT film annealed for 10 min can be explained by a film morphology change, which involved not only the change in grain shape, but also the generation of a large amount of nanopores near its bottom interface.

13.
Nanomicro Lett ; 14(1): 198, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36201086

RESUMO

Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light, mechanical and thermal energy and achieve a stable direct current output. Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage, while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics. Here, we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO3 ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies. This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3% energy enhancement to achieve a multi-dimensional "1 + 1 > 2" coupling enhancement in terms of current, charge and energy. This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.

14.
J Phys Condens Matter ; 34(41)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35901791

RESUMO

In this paper, a phase-field model of Si-doped hafnium oxide-based ferroelectric thin films is established. And then, the synergistic effect of Si concentration and distribution on ferroelectric properties optimization of Si:HfO2ferroelectric thin films is studied with the proposed model. It is found that no matter how Si dopant is distributed in the film, the volume fraction of the ferroelectric phase in the film increases first and then decreases with the increase of Si concentration. However, compared with the uniform distribution, the layered distribution is more likely to great improve ferrelectric properties. When Si dopant is uniformly distributed in the film, the highest remanent polarization value that the film can obtain via Si concentration modulation is 38.7µC cm-2, and the corresponding Si concentration is 3.8 cat%, which is consistent with the experimental results. When Si dopant is layered in the film, and the concentration difference between the Si-rich and Si-poor layers is 7.6%, in the Si concentration range of 3.6 cat%-3.8 cat%, the residual polarization of the film reaches 46.4-46.8µC cm-2, which is 20% higher than that when Si dopant are evenly distributed in the film. The above results show that selecting the Si layered distribution mode and controlling the concentration difference between Si-rich and Si-poor layers in an appropriate range can greatly improve the films' ferroelectric properties and broaden the Si concentration optimization range of the ferroelectric properties of the films. The result provides further theoretical guidance on using Si doping to adjust the ferroelectric properties of hafnium oxide-based films.

15.
ACS Appl Mater Interfaces ; 13(48): 57532-57539, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813285

RESUMO

Strong electromechanical coupling is observed in tetragonal Pb-free 0.7(Bi0.5Na0.5)TiO3-0.3BaTiO3 films, which is far from the morphotropic phase boundary, prepared by pulsed laser deposition on a Si substrate. The tensile strain induced during cooling causes in-plane polarization in an oriented film on a Si substrate, while an epitaxial film grown on a SrTiO3 substrate exhibits out-of-plane polarization. S-E curve analysis reveals that the obtained piezoelectric coefficient for the film on the Si substrate (d33,f ≈ 275 pm/V) is approximately eight times higher than that for the epitaxial film on the SrTiO3 substrate (d33,f ≈ 34 pm/V). In situ X-ray diffraction analysis confirms the occurrence of domain switching under an electric field from in-plane to out-of-plane polarization. An effective piezoelectric stress coefficient, e31,eff, of ∼19 C/m2 is obtained from a Si cantilever sample, which is the highest among the reported values for Pb-free piezoelectric films and is comparable to those for Pb-based films. The significant piezoelectric response produced by domain switching in the Pb-free materials with the composition far from the morphotropic phase boundary will expand future applications due to their both outstanding properties and environmental sustainability.

16.
Materials (Basel) ; 13(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630791

RESUMO

The discovery of ferroelectricity in HfO2-based materials in 2011 provided new research directions and opportunities. In particular, for atomic layer deposited Hf0.5Zr0.5O2 (HZO) films, it is possible to obtain homogenous thin films with satisfactory ferroelectric properties at a low thermal budget process. Based on experiment demonstrations over the past 10 years, it is well known that HZO films show excellent ferroelectricity when sandwiched between TiN top and bottom electrodes. This work reports a comprehensive study on the effect of TiN top and bottom electrodes on the ferroelectric properties of HZO thin films (10 nm). Investigations showed that during HZO crystallization, the TiN bottom electrode promoted ferroelectric phase formation (by oxygen scavenging) and the TiN top electrode inhibited non-ferroelectric phase formation (by stress-induced crystallization). In addition, it was confirmed that the TiN top and bottom electrodes acted as a barrier layer to hydrogen diffusion into the HZO thin film during annealing in a hydrogen-containing atmosphere. These features make the TiN electrodes a useful strategy for improving and preserving the ferroelectric properties of HZO thin films for next-generation memory applications.

17.
ACS Appl Mater Interfaces ; 12(36): 40510-40517, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805812

RESUMO

A capping layer is known to be critical for stabilizing the ferroelectric (FE) orthorhombic phase (o-phase) in a HfO2-based thin film. Here, vanadium oxide (VOx), a functional oxide exhibiting the insulator-metal transition, is used as a novel type of a capping layer for the Hf0.5Zr0.5O2 (HZO) thin film. It is demonstrated that the VOx capping layer (VCL) can enhance the FE properties of the HZO thin film comprehensively. Specifically, the HZO thin film with a VCL shows large remanent polarization (2Pr ≈36.9 µC/cm2), relatively small coercive field (Ec ≈1.09 MV/cm), high endurance (up to 109 cycles), and long retention (>105 seconds). The enhanced FE properties may be attributed to the VCL-induced stabilization of the FE o-phase and suppression of oxygen vacancies at the interface. Furthermore, the HZO thin film with a VCL exhibits a successive rightward shift of polarization-voltage (P-V) hysteresis loop as the temperature increases. This is well correlated with the insulator-metal transition in a VCL, which can modulate the interfacial built-in field and thus cause the P-V loop shift. It is therefore demonstrated that a VCL not only enhances the FE properties of HZO thin films but also provides a temperature degree of freedom to modulate the FE properties, which may open up a new pathway to develop HfO2-based FE memories with high performance and novel functionalities.

18.
Nanoscale Res Lett ; 13(1): 127, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700706

RESUMO

Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd)4Ti3O12 films as insulator, and HfO2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO2 defect control layer shows a low leakage current density of 3.1 × 10-9 A/cm2 at a gate voltage of - 3 V.

19.
Ultramicroscopy ; 193: 84-89, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29957330

RESUMO

Tuning multiple strain and polar states of ferroelectrics by using strain engineering is an essential approach for designing multifunctional electric devices such as multiple state memories. However, integrating multiple strain states is still a challenge, and in addition, revealing such strains and the resultant polar behaviors on the atomic level remains difficult. In this work we prepare PbZr0.52Ti0.48O3/PbTiO3 (PZT/PTO) superlattices on SrRuO3-buffered SrTiO3(001) substrates. Aberration-corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) reveals that the superlattice is coherent in both c (out-of-plane polar direction) and a (in-plane polar direction) domains. We find that the strain states of both PZT and PTO in c and a domains are variant, leading to four special strain states. For example, the tetragonality for PTO in c and a domains is 1.061 and 1.045, respectively. In contrast, PZT in c domains displays a tetragonality as giant as 1.107, which corresponds to 110 µC cm-2 spontaneous polarization, much larger than the bulk PZT; while PZT in a domains exhibits 1.010 tetragonality with about 70 µC cm-2 polarization. This study reveals a practical way to integrate multiple strain states and enhanced polarizations in ferroelectric films, which could be used as multifunctional electric elements.

20.
Materials (Basel) ; 7(9): 6502-6568, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788198

RESUMO

This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa