Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765917

RESUMO

Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor.

2.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591000

RESUMO

In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to be deposited in the GPFs. A different approach to determine the soot loading of GPFs is a radio frequency-based sensor (RF sensor). To facilitate sensor development, in previous work, a simulation model was created to determine the RF signal at arbitrary engine operating points. To ensure accuracy, the exact dielectric properties of the soot need to be known. This work has shown how small samples of soot-loaded filter are sufficient to determine the dielectric properties of soot itself using the microwave cavity perturbation method. For this purpose, mixing rules were determined through simulation and measurement, allowing the air and substrate fraction of the sample to be considered. Due to the different geometry of filter substrates compared to crushed soot samples, a different mixing rule had to be derived to calculate the effective filter properties required for the simulation model. The accuracy of the determined mixing rules and the underlying simulation model could be verified by comparative measurements on an engine test bench.


Assuntos
Poluentes Atmosféricos , Gasolina , Poluentes Atmosféricos/análise , Gasolina/análise , Micro-Ondas , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
3.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384796

RESUMO

Gasoline particulate filters (GPFs) are an appropriate means to meet today's emission standards. As for diesel applications, GPFs can be monitored via differential pressure sensors or using a radio-frequency approach (RF sensor). Due to largely differing soot properties and engine operating modes of gasoline compared to diesel engines (e.g., the possibility of incomplete regenerations), the behavior of both sensor systems must be investigated in detail. For this purpose, extensive measurements on engine test benches are usually required. To simplify the sensor development, a simulation model was developed using COMSOL Multiphysics® that not only allowed for calculating the loading and regeneration process of GPFs under different engine operating conditions but also determined the impact on both sensor systems. To simulate the regeneration behavior of gasoline soot accurately, an oxidation model was developed. To identify the influence of different engine operating points on the sensor behavior, various samples generated at an engine test bench were examined regarding their kinetic parameters using thermogravimetric analysis. Thus, this compared the accuracy of soot mass determination using the RF sensor with the differential pressure method. By simulating a typical driving condition with incomplete regenerations, the effects of the soot kinetics on sensor accuracy was demonstrated exemplarily. Thereby, the RF sensor showed an overall smaller mass determination error, as well as a lower dependence on the soot kinetics.

4.
Sensors (Basel) ; 15(9): 21971-88, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26340629

RESUMO

Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions.

5.
J Environ Manage ; 154: 225-58, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25743879

RESUMO

The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations.


Assuntos
Poluição do Ar/prevenção & controle , Material Particulado/análise , Emissões de Veículos/análise , Filtração , Humanos
6.
Chemosphere ; 301: 134717, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487355

RESUMO

Gasoline particulate filter (GPF) is a cost-effective solution to particle number emissions from gasoline direct injection vehicles. Filtration efficiency, as a key parameter of GPF, was usually assessed at chassis level over regulatory drive cycles. However, the promulgation of real driving emission (RDE) requirements in the EU and Chinese regulations necessitates evaluations based on non-legislative cycles to guarantee the on-road emissions are compliant to regulatory requirements. In this research, two aggressive drive cycles, RTS95 at 23degC and modified RDE at 0degC, were complemented to the WLTC to evaluate the filtration efficiency of a catalyzed GPF (cGPF) in fresh conditions to obtain the so-called "worst-case" filtration efficiency. In the WLTC, RTS95, and simulated RDE tests, the filtration efficiency of the test cGPF was 51.1%, 41.3%, and 85.1% respectively. In the simulated RDE test, the test cGPF filtrated solid particles with a diameter above 23 nm and 10 nm at a similar efficiency. Increased filtration efficiency with heavier soot load could offset the relatively low filtration efficiency in cold-start and warm-up durations, hence the filtration efficiency for a clean cGPF showed higher sensitivity to cycle length over driving dynamics and testing temperature. In acceleration events with cGPF mounted, the particle diameter where number concentration peaked decreased as the engine warmed up. In deceleration events, bimodal and trimodal particle number size distributions with much lower concentrations were observed.


Assuntos
Poluentes Atmosféricos , Gasolina , Poluentes Atmosféricos/análise , Catálise , Poeira , Gasolina/análise , Veículos Automotores , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa