Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(6): e103777, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090359

RESUMO

Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.


Assuntos
Genoma Humano/genética , RNA não Traduzido/classificação , Terminologia como Assunto , Humanos , RNA não Traduzido/genética
2.
IUBMB Life ; 75(5): 380-389, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35880706

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) is the sole group with the authority to approve symbols for human genes, including long non-coding RNA (lncRNA) genes. Use of approved symbols ensures that publications and biomedical databases are easily searchable and reduces the risks of confusion that can be caused by using the same symbol to refer to different genes or using many different symbols for the same gene. Here, we describe how the HGNC names lncRNA genes and review the nomenclature of the seven lncRNA genes most mentioned in the scientific literature.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Bases de Dados Genéticas
3.
Genome Biol ; 24(1): 115, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173739

RESUMO

The Vertebrate Gene Nomenclature Committee (VGNC) was established in 2016 as a sister project to the HUGO Gene Nomenclature Committee, to approve gene nomenclature in vertebrate species without an existing dedicated nomenclature committee. The VGNC aims to harmonize gene nomenclature across selected vertebrate species in line with human gene nomenclature, with orthologs assigned the same nomenclature where possible. This article presents an overview of the VGNC project and discussion of key findings resulting from this work to date. VGNC-approved nomenclature is accessible at https://vertebrate.genenames.org and is additionally displayed by the NCBI, Ensembl, and UniProt databases.


Assuntos
Bases de Dados Genéticas , Vertebrados , Animais , Humanos , Vertebrados/genética
4.
F1000Res ; 9: 1493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33564398

RESUMO

Gene symbols are recognizable identifiers for gene names but are unstable and error-prone due to aliasing, manual entry, and unintentional conversion by spreadsheets to date format. Official gene symbol resources such as HUGO Gene Nomenclature Committee (HGNC) for human genes and the Mouse Genome Informatics project (MGI) for mouse genes provide authoritative sources of valid, aliased, and outdated symbols, but lack a programmatic interface and correction of symbols converted by spreadsheets. We present HGNChelper, an R package that identifies known aliases and outdated gene symbols based on the HGNC human and MGI mouse gene symbol databases, in addition to common mislabeling introduced by spreadsheets, and provides corrections where possible. HGNChelper identified invalid gene symbols in the most recent Molecular Signatures Database (MSigDB 7.0) and in platform annotation files of the Gene Expression Omnibus, with prevalence ranging from ~3% in recent platforms to 30-40% in the earliest platforms from 2002-03. HGNChelper is installable from CRAN.

5.
Methods Mol Biol ; 1865: 195-215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151768

RESUMO

The oocytes, embryos, and cell-free lysates of the frog Xenopus laevis have emerged as powerful models for quantitative proteomic experiments. In the accompanying paper (Chapter 13) we describe how to prepare samples and acquire multiplexed proteomics spectra from those. As an illustrative example we use a 10-stage developmental time series from the egg to stage 35 (just before hatching). Here, we outline how to convert the ~700,000 acquired mass spectra from this time series into protein expression dynamics for ~9000 proteins. We first outline a preliminary quality-control analysis to discover any errors that occurred during sample preparation. We discuss how peptide and protein identification error rates are controlled, and how peptide and protein species are quantified. Our analysis relies on the freely available MaxQuant proteomics pipeline. Finally, we demonstrate how to start interpreting this large dataset by clustering and gene-set enrichment analysis.


Assuntos
Análise de Dados , Embrião não Mamífero/metabolismo , Proteômica/métodos , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Análise por Conglomerados , Ontologia Genética , Humanos , Espectrometria de Massas , Peptídeos/metabolismo , Proteoma/metabolismo , Fatores de Tempo , Proteínas de Xenopus/metabolismo
6.
Trends Plant Sci ; 19(10): 672-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24950814

RESUMO

The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes.


Assuntos
Chlamydomonas reinhardtii/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Genômica , Processamento Alternativo , Loci Gênicos , Modelos Genéticos , Fotossíntese/genética , Análise de Sequência de RNA , Transcriptoma
7.
Food Chem Toxicol ; 59: 281-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770345

RESUMO

Although numerous studies have shown the cancer-preventive properties of butylidenephthalide (BP), there is little report of BP affecting human prostate cancer cells. In the present study, proteomic-based approaches were used to elucidate the anticancer mechanism of BP in LNCaP human prostate cancer cells. BP treatment decreased the viability of LNCaP human prostate cancer cells in a concentration- and time-dependent manner, which was correlated with G0/G1 phase cell cycle arrest. Increased cell cycle arrest was associated with a decrease in the level of CCND1, CDK2, and PCNA proteins and an increase in the level of CDKN2A, CDKN1A, and SFN proteins. Proteomic studies revealed that among 48 differentially expressed proteins, 25 proteins were down-regulated and 23 proteins were up-regulated and these proteins fall into one large protein protein interaction network. Among these proteins, FAS, AIFM1, BIK, CYCS, SFN, PPP2R1A, CALR, HSPA5, DDIT3, and ERN1 are apoptosis and endoplasmic reticulum (ER) stress associated proteins. Proteomic data suggested that multiple signaling pathways including FAS-dependent pathway, mitochondrial pathway, and ER stress pathway are involved in the apoptosis induced by BP.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Modelos Biológicos , Anidridos Ftálicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Adenocarcinoma/enzimologia , Adenocarcinoma/metabolismo , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Mapeamento de Peptídeos , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Receptor fas/agonistas , Receptor fas/química , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa