RESUMO
Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the ß and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Monoéster Fosfórico Hidrolases/genética , Fosforilação , RNA/genética , Capuzes de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Espermatogênese , Especificidade por SubstratoRESUMO
Spermatogenesis is a highly coordinated process that requires tightly regulated gene expression programmed by transcription factors and epigenetic modifiers. In this study, we found that nuclear respiratory factor (NRF)-1, a key transcription factor for mitochondrial biogenesis, cooperated with DNA methylation to directly regulate the expression of multiple germ cell-specific genes, including Asz1 In addition, conditional ablation of NRF1 in gonocytes dramatically down-regulated these germline genes, blocked germ cell proliferation, and subsequently led to male infertility in mice. Our data highlight a precise crosstalk between transcriptional regulation by NRF1 and epigenetic modulation during germ cell development and unequivocally demonstrate a novel role of NRF1 in spermatogenesis.-Wang, J., Tang, C., Wang, Q., Su, J., Ni, T., Yang, W., Wang, Y., Chen, W., Liu, X., Wang, S., Zhang, J., Song, H., Zhu, J., Wang, Y. NRF1 coordinates with DNA methylation to regulate spermatogenesis.