Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2310302121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154066

RESUMO

Grain rotation is commonly observed during the evolution of microstructures in polycrystalline materials of different kinds, including metals, ceramics, and colloidal crystals. It is widely accepted that interface migration in these systems is mediated by the motion of line defects with step and dislocation character, i.e., disconnections. We propose a crystallography-respecting continuum model for arbitrarily curved grain boundaries or heterophase interfaces, accounting for the disconnections' role in grain rotation. Numerical simulations demonstrate that changes in grain orientations, as well as interface morphology and internal stress field, are associated with disconnection flow. Our predictions agree with molecular dynamics simulation results for pure capillarity-driven evolution of grain boundaries and are interpreted through an extended Cahn-Taylor model.

2.
Angew Chem Int Ed Engl ; 63(2): e202314457, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38010613

RESUMO

Single crystallization of LiNix Coy Mn1-x-y O2 (NCM) is currently an effective strategy to improve the cycling life of NCM cathode, owing to the reduced surface area and enhanced mechanical strength, but the application of single crystal NCM(SC-NCM) is being hindered by severe particle agglomeration and poor C-rate performance. Here, a strategy of three-section-sintering(TSS) with the presence of grain-growth inhibitor was proposed, in which, the TSS includes three sections of phase-formation, grain-growth and phase-preservation. While, the addition of MoO3 inhibits the grain growth and restrains the particle agglomeration. With the help of TSS and 1 mol % of MoO3 , highly dispersed surface Mo-doped SC-NCM(MSC-NCM) cubes are obtained with the average diameter of 1.3 µm. Benefiting from the surface Mo-doping and the reduced surface energy, the Li+ -migration preferred (1 0 4) crystalline facet is exposed as the dominant plane in MSC-NCM cubes, because of which, C-rate performance is significantly improved compared with the regular SC-NCM. Furthermore, this preparation strategy is compatible well with the current industrial production line, providing an easy way for the large-scale production of SC-NCM.

3.
Nanotechnology ; 34(15)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652702

RESUMO

Ge2Sb2Te5(GST) is the most widely used matrix material in phase change random access memory (PCRAM). In practical PCRAM device, the formed large hexagonal phase in GST material is not preferred, especially when the size of storage architecture is continually scaling down. In this report, with the aid of spherical-aberration corrected transmission electron microscopy (Cs-TEM), the grain growth behavior during thein situheating process in GST alloy is investigated. Generally, the metastable face-centered-cubic (f-) grain tends to grow up with increasing temperature. However, a part of f-phase nanograins with {111} surface plane does not grow very obviously. Thus, the grain size distribution at high temperature shows a large average grain size as well as a large standard deviation. When the vacancy ordering layers forms at the grain boundary area in the nanograins, which is parallel to {111} surface plane, it could stabilize and refine these f-phase grains. By elaborating the relationship between the grain growth and the vacancy ordering process in GST, this work offers a new perspective for the grain refinement in GST-based PCRAM devices.

4.
Proc Natl Acad Sci U S A ; 117(9): 4533-4538, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071247

RESUMO

The grain-boundary (GB) mobility relates the GB velocity to the driving force. While the GB velocity is normally associated with motion of the GB normal to the GB plane, there is often a tangential motion of one grain with respect to the other across a GB; i.e., the GB velocity is a vector. GB motion can be driven by a jump in chemical potential across a GB or by shear applied parallel to the GB plane; the driving force has three components. Hence, the GB mobility must be a tensor (the off-diagonal components indicate shear coupling). Performing molecular dynamics (MD) simulations on a symmetric-tilt GB in copper, we demonstrate that all six components of the GB mobility tensor are nonzero (the mobility tensor is symmetric, as required by Onsager). We demonstrate that some of these mobility components increase with temperature, while, surprisingly, others decrease. We develop a disconnection dynamics-based statistical model that suggests that GB mobilities follow an Arrhenius relation with respect to temperature T below a critical temperature [Formula: see text] and decrease as [Formula: see text] above it. [Formula: see text] is related to the operative disconnection mode(s) and its (their) energetics. For any GB, which disconnection modes dominate depends on the nature of the driving force and the mobility component of interest. Finally, we examine the impact of the generalization of the mobility for applications in classical capillarity-driven grain growth. We demonstrate that stress generation during GB migration (shear coupling) necessarily slows grain growth and reduces GB mobility in polycrystals.

5.
Proc Natl Acad Sci U S A ; 117(52): 33077-33083, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318180

RESUMO

The formation and migration of disconnections (line defects constrained to the grain boundary [GB] plane with both dislocation and step character) control many of the kinetic and dynamical properties of GBs and the polycrystalline materials of which they are central constituents. We demonstrate that GBs undergo a finite-temperature topological phase transition of the Kosterlitz-Thouless (KT) type. This phase transition corresponds to the screening of long-range interactions between (and unbinding of) disconnections. This phase transition leads to abrupt changes in the behavior of GB migration, GB sliding, and roughening. We analyze this KT transition through mean-field theory, renormalization group theory, and kinetic Monte Carlo simulations and examine how this transition affects microstructure-scale phenomena such as grain growth stagnation, abnormal grain growth, and superplasticity.

6.
Proc Natl Acad Sci U S A ; 117(39): 24055-24060, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32938800

RESUMO

Grain growth under shear annealing is crucial for controlling the properties of polycrystalline materials. However, their microscopic kinetics are not well understood because individual atomic trajectories are difficult to track. Here, we study grain growth with single-particle kinetics in colloidal polycrystals using video microscopy. Rich grain-growth phenomena are revealed in three shear regimes, including the normal grain growth (NGG) in weak shear melting-recrystallization process in strong shear. For intermediate shear, early stage NGG is arrested by built-up stress and eventually gives way to dynamic abnormal grain growth (DAGG). We find that DAGG occurs via a melting-recrystallization process, which naturally explains the puzzling stress drop at the onset of DAGG in metals. Moreover, we visualize that grain boundary (GB) migration is coupled with shear via disconnection gliding. The disconnection-gliding dynamics and the collective motions of ambient particles are resolved. We also observed that grain rotation can violate the conventional relation [Formula: see text] (R is the grain radius, and θ is the misorientation angle between two grains) by emission and annihilation of dislocations across the grain, resulting in a step-by-step rotation. Besides grain growth, we discover a result in shear-induced melting: The melting volume fraction varies sinusoidally on the angle mismatch between the triangular lattice orientation of the grain and the shear direction. These discoveries hold potential to inform microstructure engineering of polycrystalline materials.

7.
Nano Lett ; 22(3): 979-988, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35061402

RESUMO

Antisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents. The morphological changes, driven by a vaporized methylammonium chloride (MACl)-dimethylformamide (DMF) solution, lead to comprehensive defect elimination. Our nanoscale characterization visualizes the local defective clusters in the as-deposited film and their elimination following treatment, which couples with the observation of emissive grain boundaries and excellent inter- and intragrain optoelectronic uniformity in the polycrystalline film. Overcoming these performance-limiting inhomogeneities results in the enhancement of the photoresponse to low-light (<0.1 mW cm-2) illumination by up to 40-fold, yielding high-performance photodiodes with superior low-light detection.

8.
Small ; 18(50): e2204392, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319478

RESUMO

Small grain size and near-horizontal grain boundaries are known to be detrimental to the carrier collection efficiency and device performance of pure-sulfide Cu2 ZnSnS4 (CZTS) solar cells. However, forming large grains spanning the absorber layer while maintaining high electronic quality is challenging particularly for pure sulfide CZTS. Herein, a liquid-phase-assisted grain growth (LGG) model that enables the formation of large grains spanning across the CZTS absorber without compromising the electronic quality is demonstrated. By introducing a Ge-alloyed CZTS nanoparticle layer at the bottom of the sputtered precursor, a Cu-rich and Sn-rich liquid phase forms at the high temperature sulfurization stage, which can effectively remove the detrimental near-horizontal grain boundaries and promote grain growth, thus greatly improving the carrier collection efficiency and reducing nonradiative recombination. The remaining liquid phase layer at the rear interface shows a high work function, acting as an effective hole transport layer. The modified morphology greatly increases the short-circuit current density and fill factor, enabling 10.3% efficient green Cd-free CZTS devices. This work unlocks a grain growth mechanism, advancing the morphology control of sulfide-based kesterite solar cells.

9.
Small ; 18(18): e2106825, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35253990

RESUMO

Sintering is a very important process in materials science and technological applications. Despite breakthroughs in achieving optimized piezoelectric properties, fundamentals of K0.5 Na0.5 NbO3 (KNN) sintering are not yet fully understood, facing densification versus grain growth competition. At present, microscale events during KNN sintering under reducing atmospheres are real-time monitored using a High Temperature-Environmental Scanning Electron Microscope. A two contacting KNN particles model satisfying the Kingery and Berg's bulk diffusion model is reported. Dynamic events like individual grain growth and grain elimination process are explored through a postanalysis of recorded image series. The diffusion coefficient for oxygen vacancies of 10-8 cm2 s-1 and average boundary mobility of 10-9 cm4 J-1 s-1 are reported for the KNN ceramics. Moreover, the local pore shrinkage is consistent with the Kingery and François's concept of pore stability except that pore curvatures are not all concave, convex or flat due to anisotropic grain-boundary energies. The global grain growth kinetics are described using parabolic and/or cubic laws. The effect of atmospheres and microstructure evolution on the intrinsic and extrinsic contributions to the dielectric response using Rayleigh's law is also explored. These results bring a new breath for KNN sintering studies in order to adapt the sintering process.

10.
Microsc Microanal ; : 1-11, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073062

RESUMO

The solubility limit of carbon in α-Al2O3 (alumina) equilibrated at 1,600°C under He in a graphite furnace was measured by wavelength-dispersive spectroscopy. Undoped alumina and alumina containing carbon at a concentration resulting in the precipitation of a second phase were prepared and equilibrated at 1,600°C. The undoped alumina was used to quantify the amount of carbon deposited on the surface of samples because of hydrocarbon contamination in the electron microscope, and this background level was removed from the signal measured from carbon-doped samples. The solubility limit of carbon in alumina was found to be 5,300 ± 390 at. ppm, and it is believed that carbon substitutes oxygen as an anion and is charge-compensated by oxygen vacancies. Doping alumina with carbon at concentrations below the solubility limit does not impede densification and reduces grain growth. Doping above the solubility limit hinders densification during sintering.

11.
Small ; 17(25): e2100678, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34032366

RESUMO

Interfacial engineering methods have been developed to solve defect issues of perovskite solar cells (PSCs). However, traditional surface passivation has limited effects on eliminating defect-forming residuals, while secondary grain growth (SGG) is restricted by limited choices of additives and intrinsic properties of perovskites. Here, a pincer strategy of taking advantages of surface passivation and SGG is proposed to modify both exterior and interior of CH3 NH3 PbI3 (MAPbI3 ) perovskite, by employing cyanoacetate-containing donor-acceptor compounds (CA-D-A) including 2-cyano-3-(3,4,5-trimethoxyphenyl)acrylic acid (CA), methanaminium 2-cyano-3-(3,4,5-trimethoxyphenyl)acrylate (CAMA), and aminomethaniminium (Z)-2-cyano-3-(3,4,5-trimethoxyphenyl)acrylate (CAFA). In comparison to untreated perovskite, CA-D-A treated perovskites present better crystallinity because of SGG, lower trap densities due to the synergistic effect of surface passivation and SGG, and tuned energy levels induced by CA-D-A. Accordingly, the CA-D-A treated MAPbI3 -based PSCs exhibit higher open-circuit voltage and fill factor than the control PSC without any treatment, leading to improved power conversion efficiency (PCE) and enhanced device stability, especially the CAMA treated PSCs with an average PCE promoted from 17.77 (control PSCs) to 18.71%, and importantly an excellent PCE of 19.71% through further optimization. This work provides an effective strategy for developing highly efficient and stable PSCs with the assistance of both surface passivation and SGG.

12.
J Struct Biol ; 209(1): 107432, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816415

RESUMO

High-resolution three-dimensional imaging is key to our understanding of biological tissue formation and function. Recent developments in synchrotron-based X-Ray tomography techniques provide unprecedented morphological information on relatively large sample volumes with a spatial resolution better than 50 nm. However, the analysis of the generated data, in particular image segmentation - separation into structure and background - still presents a significant challenge, especially when considering complex biomineralized structures that exhibit hierarchical arrangement of their constituents across many length scales - from millimeters down to nanometers. In the present work, synchrotron-based holographic nano-tomography data are combined with state-of-the-art machine learning methods to image and analyze the nacreous architecture in the bivalve Unio pictorum in 3D. Using kinetic and thermodynamic considerations known from physics of materials, the obtained spatial information is then used to provide a quantitative description of the structural and topological evolution of nacre during shell formation. Ultimately, this study establishes a workflow for high-resolution three-dimensional analysis of fine highly-mineralized biological tissues while providing a detailed analytical view on nacre morphogenesis.


Assuntos
Exoesqueleto/ultraestrutura , Imageamento Tridimensional , Morfogênese/genética , Exoesqueleto/crescimento & desenvolvimento , Animais , Biomineralização , Aprendizado Profundo , Cinética , Minerais/química , Síncrotrons , Termodinâmica , Tomografia por Raios X , Raios X
13.
J Microsc ; 279(3): 249-255, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32259284

RESUMO

A novel heat stage, recently developed for use within the Scanning Electron Microscope, has facilitated Secondary Electron imaging at temperatures up to 850°C. This paper demonstrates one of the applications of in-situ elevated temperature Scanning Electron Microscope imaging: observation and quantification of grain growth within the austenitic region of carbon steels. The resulting Secondary Electron data have used the technique of thermal etching to capture possible 'abnormal grain growth' in the austenitic region. Previous ex-situ and post-heating results from carbon steels indicate normal, non-linear grain growth. Therefore, this new dataset provides greater insight into the heat treatment of steels. From comparison of the in-situ data with the overall grain growth, measured ex-situ, it is further concluded that abnormal grain growth is representative of the growth at temperature. Thus, the heating and cooling parts of the heat treatment are likely to account for the non-linearity previously documented in ex-situ results and, hence, the range of powers recorded when fitting power law models for steel grain growth. The ability of data derived from in-situ thermal etching to represent the microstructure of the entire surface and the bulk material is also considered. LAY DESCRIPTION: A novel heating stage has recently been developed for use within the Scanning Electron Microscope (SEM); an instrument that uses electrons to image specimen surfaces at very high magnifications. The development of the heating stage has facilitated imaging at temperatures up to 850°C of the structure and topographic features of metals using two different detectors. This study focusses on observation and quantification of grain growth in steels at temperatures of 800  C. In Materials Science, grains refer to crystals of varying, randomly distributed, small sizes that together make up a solid metal. The temperature of 800  C is used as it is the desired temperature to heat treat steels in order to produce more favourable physical properties. It is also the temperature above which the material undergoes a phase change; phase change is a transition where the atoms rearrange from one order within a grain to another. In the case of steel, at room temperature atoms will be in what is called a ferrite phase (one order) but at 800  C, they will be in a different order within the grains, known as the austenite phase. Hence, the uniqueness of this dataset as the grain growth captured is in the high temperature steel phase of austenite. The steel samples used are made up of 0.4% Carbon, 99% iron and some manganese and other trace elements. The resulting data have, for the first time, shown so called 'abnormal grain growth' which is represented by a linear relationship between grain size and time. Abnormal grain growth is also observed in the images where it can be seen how larger grains grow at a high rate at the expense of smaller ones. Previous data taken after cooling of steels indicate normal non-linear grain growth. Therefore, it is reasonable to suggest, this new dataset provides greater insight into the heat treatment processing of steels, demonstrating that they are potentially more complex than previously thought.

14.
Microsc Microanal ; 25(4): 883-890, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31232246

RESUMO

Kinematic indicators, including certain strain fringes, represent an important group of structures related to the progressive deformation in rocks. The evolution of these fibrous textures can be explained by the combination of multiple mechanisms of deformation and fluid flow, mainly controlled by the orientation of the strain field and the morphology of the grains. In general, the observations are done with an optical microscope and compared with computational models of growth. This work proposes a combination of crystallographic and cathodoluminescence data obtained in rocks from banded iron formations of the Iron Quadrangle in Brazil to represent an example of how complementary analytical techniques can be useful to understand geological problems. The chosen sample exhibits a strain fringe structure of quartz around a clast of magnetite partially transformed into goethite and hematite. Through the crystallographic data it was possible to identify the grain boundary morphology and domains of low deformation areas. On the other hand, the cathodoluminescence signal evidenced the occurrence of grains with a higher concentration of crystalline defects.

15.
Nano Lett ; 18(1): 130-136, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29240429

RESUMO

Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

16.
Entropy (Basel) ; 21(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33267012

RESUMO

The recrystallization behavior, grain growth kinetics, and corresponding hardness variation of homogenized and 80% cold-rolled FeCoNiCrPd, FeCoNiCrMn, and their quaternary/ternary FCC-structured high/medium entropy alloys (H/MEAs) annealed under different conditions were investigated. Experimental results indicate that the grain size and hardness of these H/MEAs follow the Hall-Petch equation, with the Hall-Petch coefficient KH value being mainly dominated by the alloy's stacking fault energy and shear modulus. The FeCoNiCrPd alloy exhibits the highest hardness of the H/MEAs at the same grain size due to the largest Young's modulus difference between Cr and Pd. The grain growth exponent n, kinetic constant k, and activation energy for grain growth QG of all H/MEAs are calculated. The k can be expressed by the Arrhenius equation with QG, which is attributed to the diffusion rate. The results demonstrate that the QG values of these H/MEAs are much higher than those of conventional alloys; most notable is FeCoNiCrPd HEA, which has an unusually lattice distortion effect that hinders grain growth.

17.
J Am Ceram Soc ; 101(11): 4994-5003, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333631

RESUMO

A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing-induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10-5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two-dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation-induced stabilization of (110) faces and step edges of the grain surfaces.

18.
Sci Technol Adv Mater ; 18(1): 857-869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29152018

RESUMO

We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.

19.
Sci Technol Adv Mater ; 18(1): 253-262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458747

RESUMO

Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.

20.
Sci Technol Adv Mater ; 18(1): 480-497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804524

RESUMO

Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with <001>, which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110}<001> (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa