Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(37): e2403253, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38860540

RESUMO

The electrochemical nitrate reduction reaction (NO3RR) is of significance in regards of environmentally friendly issues and green ammonia production. However, relatively low performance with a competitive hydrogen evolution reaction (HER) is a challenge to overcome for the NO3RR. In this study, oxygen vacancy-controlled copper oxide (CuOx) catalysts through a plasma treatment are successfully prepared and supported on high surface area porous carbon that are co-doped with N, Se species for its enhanced electrochemical properties. The oxygen vacancy-increased CuOx catalyst supported on the N,Se co-doped porous carbon (CuOx-H/NSePC) exhibited the highest NO3RR performance with faradaic efficiency (FE) of 87.2% and yield of 7.9 mg cm-2 h-1 for the ammonia production, representing significant enhancements of FE and ammonia yield as compared to the un-doped or the oxygen vacancy-decreased catalysts. This high performance should be attributed to a significant increase in the catalytic active sites with facilitated energetics from strategies of doping the catalytic materials and weakening the N─O bonding strength for the adsorption of NO3 - ions on the modulated oxygen vacancies. This results show a promise that co-doping of heteroatoms and regulating of oxygen vacancies can be key factors for performance enhancement, suggesting new guidelines for effective catalyst design of NO3RR.

2.
Angew Chem Int Ed Engl ; 63(2): e202311413, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009687

RESUMO

With its efficient nitrogen fixation kinetics, electrochemical lithium-mediated nitrogen reduction reaction (LMNRR) holds promise for replacing Haber-Bosch process and realizing sustainable and green ammonia production. However, the general interface problem in lithium electrochemistry seriously impedes the further enhancement of LMNRR performance. Inspired by the development history of lithium battery electrolytes, here, we extend the ring-chain solvents coupling law to LMNRR system to rationally optimize the interface during the reaction process, achieving nearly a two-fold Faradaic efficiency up to 54.78±1.60 %. Systematic theoretical simulations and experimental analysis jointly decipher that the anion-rich Li+ solvation structure derived from ring tetrahydrofuran coupling with chain ether successfully suppresses the excessive passivation of electrolyte decomposition at the reaction interface, thus promoting the mass transfer of active species and enhancing the nitrogen fixation kinetics. This work offers a progressive insight into the electrolyte design of LMNRR system.

3.
Small ; 19(6): e2205424, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464649

RESUMO

Green ammonia is an efficient, carbon-free energy carrier and storage medium. The ammonia synthesis using green hydrogen requires an active catalyst that operates under mild conditions. The catalytic activity can be promoted by controlling the geometry and electronic structure of the active species. An exsolution process is implemented to improve catalytic activity by modulating the geometry and electronic structure of Ru. Ru nanoparticles exsolved on a BaCe0.9 Y0.1 O3-δ support exhibit uniform size distribution, 5.03 ± 0.91 nm, and exhibited one of the highest activities, 387.31 mmolNH3  gRu -1  h-1 (0.1 MPa and 450 °C). The role of the exsolution and BaCe0.9 Y0.1 O3-δ support is studied by comparing the catalyst with control samples and in-depth characterizations. The optimal nanoparticle size is maintained during the reaction, as the Ru nanoparticles prepared by exsolution are well-anchored to the support with in-plane epitaxy. The electronic structure of Ru is modified by unexpected in situ Ba promoter accumulation around the base of the Ru nanoparticles.

4.
J Environ Manage ; 343: 118215, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235993

RESUMO

This study aims to explore more sustainable ammonia production routes for urea and ammonium nitrate fertilizers to support the rising global food demand and help achieve the Net Zero Emissions scenario by 2050. The research uses process modelling tools and Life Cycle Assessment methodology to evaluate the technical and environmental performance of green ammonia production compared to blue ammonia production, both pathways coupled with urea and ammonium nitrate production processes. The blue ammonia scenario uses steam methane reforming for H2 production, while the sustainable approach scenarios consider water electrolysis with renewable resources (i.e., wind, hydro and photovoltaics) and nuclear power as a carbon-free source for H2 generation. The study assumes an annual productivity of 450,000 tons for both urea and ammonium nitrate. The environmental assessment uses mass and energy balance data derived from process modelling and simulation. A cradle-to-gate environmental evaluation is conducted using GaBi software and the Recipe 2016 impact assessment method. Results show that green ammonia production requires less raw materials but has higher energy consumption due to electrolytic H2 production (i.e., >90% of total energy requirements). The use of nuclear power achieves the highest reduction in global warming potential (i.e., 5.5 times for urea and 2.5 times for ammonium nitrate production processes), while hydro power coupled with electrolytic H2 production shows lower environmental impacts in most categories (i.e., six out of ten impact categories). Overall, the sustainable scenarios prove to be suitable alternatives for fertilizer production towards achieving a more sustainable future.


Assuntos
Amônia , Ureia , Agricultura/métodos , Meio Ambiente , Fertilizantes/análise
5.
Chimia (Aarau) ; 77(3): 150-153, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047819

RESUMO

Intense efforts have been devoted to developing green and blue centralised Haber-Bosch processes (gHB and bHB, respectively), but the feasibility of a decentralised and sustainable scheme has yet to be assessed. Here we reveal the conditions under which small-scale systems based on the electrocatalytic reduction of nitrogen (eN2R) powered by photovoltaic energy (NH3-leaf) could become a competitive technology in terms of environmental criteria. To this end, we calculated energy efficiency targets based on solar irradiation atlases to guide research in the incipient eN2R field. Even under this germinal state, the NH3-leaf technology would compete favourably in sunny locations relative to the business-as-usual production scenario. The disclosed sustainability potential of NH3-leaf makes it a strong ally of gHB toward a non-fossil ammonia production.

6.
Angew Chem Int Ed Engl ; 59(52): 23825-23829, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32926543

RESUMO

Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber-Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO2 emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NOx trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol-1 NH3 , which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N2 and H2 with reasonable yield (>1 %).

8.
Nanomicro Lett ; 16(1): 89, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227269

RESUMO

Renewable energy driven N2 electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production. However, relevant out-lab research is still in its infancy. Herein, a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC-V, was synthesized by controlled etching Sn@Ti2SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction. Due to the synergistic effect of MXene/MAX heterostructure, the existence of Sn vacancies and the highly dispersed Sn active sites, the obtained Sn@Ti2CTX/Ti2SnC-V exhibits an optimal NH3 yield of 28.4 µg h-1 mgcat-1 with an excellent FE of 15.57% at - 0.4 V versus reversible hydrogen electrode in 0.1 M Na2SO4, as well as an ultra-long durability. Noticeably, this catalyst represents a satisfactory NH3 yield rate of 10.53 µg h-1 mg-1 in the home-made simulation device, where commercial electrochemical photovoltaic cell was employed as power source, air and ultrapure water as feed stock. The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis. This work is of significance for large-scale green ammonia production.

9.
Chemosphere ; 358: 142161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685335

RESUMO

A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.


Assuntos
Carbono , Nitratos , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Catálise , Nitratos/química , Poluentes Químicos da Água/química , Carbono/química , Cobalto/química , Imidazóis/química , Oxirredução , Estruturas Metalorgânicas/química , Compostos de Amônio/química
10.
Heliyon ; 9(11): e21802, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045201

RESUMO

Ammonia is one of the most produced chemicals around the world due to its various uses. However its traditional production process is associated with high fossil fuel consumption. To avoid this, the production of green ammonia can be done, and one of the considered production methods is water electrolysis, where the hydrogen needed for the manufacturing of ammonia is produced using solar energy. In this work, multi-objective optimization (MOO) is carried out for two ammonia synthesis processes with water electrolysis. One process uses solar energy to generate electricity for the whole process (Green ammonia), while the other uses natural gas for the same purpose (non-green ammonia) on a small production scale. The process is simulated using ProMax 5.0 and MOO is done using Excel-based MOO with I-MODE algorithm. Several MOO cases are solved with different objectives like CO2 emissions and energy (ENG) minimization, and Profit and Purity maximization in two and three objective cases. To conduct the work, several decision variables are selected like the operating temperatures and pressures of different streams in addition to the flow rate of nitrogen and water. Some constraints regarding the purity and reactors temperature are considered as well. The obtained results showed that the profit of green ammonia process (ranges between 0.7 and 80 M$/yr) is lower compared to the non-green process (ranges between 0.8 and 4.4 M$/yr). On the other hand, huge CO2 emissions (up to 38000 tons/yr) are produced in the non-green process compared to almost zero emissions with the green process. In most cases, water and nitrogen flow rates showed a high influence on the results and caused conflict between the objectives.

11.
Nanomaterials (Basel) ; 13(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37999267

RESUMO

The growing interest in green ammonia production has spurred the development of new catalysts with the potential to carry out the Haber-Bosch process under mild pressure and temperature conditions. While there is a wide experimental background on new catalysts involving transition metals, supports and additives, the fundamentals behind ammonia synthesis performance on these catalysts remained partially unsolved. Here, we review the most important works developed to date and analyze the traditional catalysts for ammonia synthesis, as well as the influence of the electron transfer properties of the so-called 3rd-generation catalysts. Finally, the importance of metal-support interactions is highlighted as an effective pathway for the design of new materials with potential to carry out ammonia synthesis at low temperatures and pressures.

12.
ChemSusChem ; 16(22): e202300942, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877342

RESUMO

An important part of realizing a carbon-neutral society using ammonia will be the development of an inexpensive yet efficient catalyst for ammonia synthesis under mild reaction conditions (<400 °C, <10 MPa). Here, we report Fe/K(3)/MgO, fabricated via an impregnation method, as a highly active catalyst for ammonia synthesis under mild reaction conditions (350 °C, 1.0 MPa). At the mentioned conditions, the activity of Fe/K(3)/MgO (17.5 mmol h-1 gcat -1 ) was greater than that of a commercial fused iron catalyst (8.6 mmol h-1 gcat -1 ) currently used in the Haber-Bosch process. K doping was found to increase the ratio of Fe0 on the surface and turnover frequency of Fe in our Fe/K(3)/MgO catalyst. In addition, increasing the pressure to 3.0 MPa at the same temperature led to a significant improvement of the ammonia synthesis rate to 29.6 mmol h-1 gcat -1 , which was higher than that of two more expensive, benchmark Ru-based catalysts, which are also potential alternative catalysts. A kinetics analysis revealed that the addition of K enhanced the ammonia synthesis activity at ≥300 °C by changing the main adsorbed species from NH to N which can accelerate dissociative adsorption of nitrogen as the rate limiting step in ammonia synthesis.

13.
J Agric Food Chem ; 71(22): 8265-8296, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219570

RESUMO

The ability of modern agriculture to meet future food demand imposed by accelerating growth of the world's population is a major challenge, and fertilizers play a key role by replacing nutrients in agricultural soil. Given the need for fertilizers, their cost in nonrenewable resources and energy, and the consequences of the greenhouse gas emissions required to make them, people have begun to explore ways to make fertilizer manufacturing and use more sustainable. Using data from the CAS Content Collection, this review examines and analyzes the academic and patent literature on sustainable fertilizers from 2001 to 2021. The breakdown of journal and patent literature publication over time on this topic, country or region of publications, the substances included in published research, among other things allow us to understand the general progress in the field as well as the classes of materials and concepts driving innovation. We hope that this bibliometric analysis and literary review will assist researchers in relevant industries to discover and implement ways to supplement conventional fertilizers and nutrient sources while improving the efficiency and sustainability of waste management and ammonia production.


Assuntos
Fertilizantes , Amônia/síntese química , Água/química , Poluentes da Água/isolamento & purificação , Humanos , Animais , Purificação da Água/métodos , Agricultura
14.
ACS Appl Mater Interfaces ; 15(9): 11703-11712, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812428

RESUMO

Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 µg h-1 mgcat.-1 (corresponding to 10.5 µg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.

15.
ChemSusChem ; 15(10): e202102526, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35285575

RESUMO

Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.


Assuntos
Amônia , Nitrogênio , Amônia/química , Dióxido de Carbono , Catálise , Nitrogênio/química , Oxirredução
16.
ACS Appl Mater Interfaces ; 14(32): 37076-37087, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35925836

RESUMO

Photocatalytic N2 fixation has emerged as one of the most useful ways to produce NH3, a useful asset for chemical industries and a carbon-free energy source. Recently, significant progress has been made toward designing efficient photocatalysts to achieve this objective. Here, we introduce a highly active type-II heterojunction fabricated via integrating two-dimensional (2D) nanosheets of exfoliated g-C3N5 with nickel-chromium layered double hydroxide (NiCr-LDH). With an optimized loading of NiCr-LDH on exfoliated g-C3N5, excellent performance is realized for green ammonia synthesis under ambient conditions without any noble metal cocatalyst(s). Indeed, the g-C3N5/NiCr-LDH heterostructure with 2 wt % of NiCr-LDH (CN-NCL-2) exhibits an ammonia yield of about 2.523 mmol/g/h, which is about 7.51 and 2.86 times higher than that of solo catalysts, i.e., NiCr-LDH (NC-L) and exfoliated g-C3N5 (CN-5), respectively, where methanol is used as a sacrificial agent. The enhancement of NH3 evolution by the g-C3N5/NiCr-LDH heterostructure can be attributed to the efficient charge transfer, a key factor to the photocatalytic N2 fixation rate enhancement. Additionally, N2 vacancies present in the system help adsorb N2 on the surface, which improves the ammonia production rate further. The best-performing heterostructure also shows long-term stability with the NH3 production rate remaining nearly constant over 20 h, demonstrating the excellent robustness of the photocatalyst.

17.
Adv Mater ; 33(50): e2005721, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33834538

RESUMO

Efficient storage and conversion of renewable energies is of critical importance to the sustainable growth of human society. With its distinguishing features of high hydrogen content, high energy density, facile storage/transportation, and zero-carbon emission, ammonia has been recently considered as a promising energy carrier for long-term and large-scale energy storage. Under this scenario, the synthesis, storage, and utilization of ammonia are key components for the implementation of ammonia-mediated energy system. Being different from fossil fuels, renewable energies normally have intermittent and variable nature, and thus pose demands on the improvement of existing technologies and simultaneously the development of alternative methods and materials for ammonia synthesis and storage. The energy release from ammonia in an efficient manner, on the other hand, is vital to achieve a sustainable energy supply and complete the nitrogen circle. Herein, recent advances in the thermal-, electro-, plasma-, and photocatalytic ammonia synthesis, ammonia storage or separation, ammonia thermal/electrochemical decomposition and conversion are summarized with the emphasis on the latest developments of new methods and materials (catalysts, electrodes, and sorbents) for these processes. The challenges and potential solutions are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa