Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Annu Rev Cell Dev Biol ; 32: 633-648, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27712101

RESUMO

Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. From the onset of blood flow, the embryonic vasculature is continuously exposed to a variety of hemodynamic forces. These biomechanical stimuli are key determinants of vascular cell specification and remodeling and the establishment of vascular homeostasis. In recent years, major advances have been made in our understanding of mechano-activated signaling networks that control both spatiotemporal and structural aspects of vascular development. It has become apparent that a major site for mechanotransduction is situated at the interface of blood and the vessel wall and that this process is controlled by the vascular endothelium. In this review, we discuss the hemodynamic control of endothelial cell fates, focusing on arterial-venous specification, lymphatic development, and the endothelial-to-hematopoietic transition, and present some recent insights into the mechano-activated pathways driving these cell fate decisions in the developing embryo.


Assuntos
Linhagem da Célula , Desenvolvimento Embrionário , Células Endoteliais/citologia , Hemodinâmica , Animais , Humanos , Mecanotransdução Celular , Reologia
2.
Genes Dev ; 35(21-22): 1398-1400, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725127

RESUMO

Definitive long-term hematopoietic stem cells (LT-HSCs) arise during embryogenesis in a process termed endothelial-to-hematopoietic transition (EHT), in which specialized hemogenic endothelial cells (HECs) transform into hematopoietic cells. The transcription factor RUNX1 marks HECs and is essential for EHT. Ectopic RUNX1 expression in non-HECs is sufficient to convert them into HECs. However, the conversion efficiency depends on the developmental timing of expression. In this issue of Genes & Development, Howell and colleagues (pp. 1475-1489) leverage this observation to further understand how RUNX1 mediates EHT. They engineered mice that ectopically express RUNX1 in endothelial cells at different developmental time points and doses. They then performed chromatin accessibility and other analyses and correlate this with hemogenic potential. They found that RUNX1 collaborates with TGFß signaling transcription factors to drive chromatin accessibility changes that specify HECs. They also highlight interesting parallels between EHT and endothelial-to-mesenchymal transition (EndoMT), which occurs during cardiac development. The results of Howell and colleagues provide new mechanistic insights into EHT and take us one step closer to generating patient-specific LT-HSCs from induced pluripotent stem cells.


Assuntos
Hemangioblastos , Hematopoese , Animais , Adesão Celular , Diferenciação Celular/genética , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos
3.
Genes Dev ; 35(21-22): 1475-1489, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34675061

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo from hemogenic endothelial cells (HECs) via an endothelial-to-hematopoietic transition (EHT) that requires the transcription factor RUNX1. Ectopic expression of RUNX1 alone can efficiently promote EHT and HSPC formation from embryonic endothelial cells (ECs), but less efficiently from fetal or adult ECs. Efficiency correlated with baseline accessibility of TGFß-related genes associated with endothelial-to-mesenchymal transition (EndoMT) and participation of AP-1 and SMAD2/3 to initiate further chromatin remodeling along with RUNX1 at these sites. Activation of TGFß signaling improved the efficiency with which RUNX1 specified fetal ECs as HECs. Thus, the ability of RUNX1 to promote EHT depends on its ability to recruit the TGFß signaling effectors AP-1 and SMAD2/3, which in turn is determined by the changing chromatin landscape in embryonic versus fetal ECs. This work provides insight into regulation of EndoMT and EHT that will guide reprogramming efforts for clinical applications.


Assuntos
Hemangioblastos , Diferenciação Celular/genética , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feto , Hemangioblastos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
4.
Genes Dev ; 34(13-14): 950-964, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499402

RESUMO

Hematopoietic stem cell (HSC) ontogeny is accompanied by dynamic changes in gene regulatory networks. We performed RNA-seq and histone mark ChIP-seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in mice. The five populations analyzed were embryonic day 10.5 (E10.5) endothelium and hemogenic endothelium from the major arteries, an enriched population of prehematopoietic stem cells (pre-HSCs), fetal liver HSCs, and adult bone marrow HSCs. Using epigenetic signatures, we identified enhancers for each developmental stage. Only 12% of enhancers are primed, and 78% are active, suggesting the vast majority of enhancers are established de novo without prior priming in earlier stages. We constructed developmental stage-specific transcriptional regulatory networks by linking enhancers and predicted bound transcription factors to their target promoters using a novel computational algorithm, target inference via physical connection (TIPC). TIPC predicted known transcriptional regulators for the endothelial-to-hematopoietic transition, validating our overall approach, and identified putative novel transcription factors, including the broadly expressed transcription factors SP3 and MAZ. Finally, we validated a role for SP3 and MAZ in the formation of hemogenic endothelium. Our data and computational analyses provide a useful resource for uncovering regulators of HSC formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Algoritmos , Animais , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Edição de Genes , Camundongos , Fator de Transcrição Sp3/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Immunity ; 48(6): 1160-1171.e5, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29858009

RESUMO

Hematopoiesis occurs in distinct waves. "Definitive" hematopoietic stem cells (HSCs) with the potential for all blood lineages emerge in the aorta-gonado-mesonephros, while "primitive" progenitors, whose potential is thought to be limited to erythrocytes, megakaryocytes, and macrophages, arise earlier in the yolk sac (YS). Here, we questioned whether other YS lineages exist that have not been identified, partially owing to limitations of current lineage tracing models. We established the use of Cdh5-CreERT2 for hematopoietic fate mapping, which revealed the YS origin of mast cells (MCs). YS-derived MCs were replaced by definitive MCs, which maintained themselves independently from the bone marrow in the adult. Replacement occurred with tissue-specific kinetics. MCs in the embryonic skin, but not other organs, remained largely YS derived prenatally and were phenotypically and transcriptomically distinct from definite adult MCs. We conclude that within myeloid lineages, dual hematopoietic origin is shared between macrophages and MCs.


Assuntos
Linhagem da Célula/imunologia , Hematopoese/fisiologia , Mastócitos/citologia , Animais , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Pele/citologia , Pele/imunologia , Saco Vitelino/citologia , Saco Vitelino/embriologia
6.
Immunol Rev ; 315(1): 71-78, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36705244

RESUMO

The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Linfócitos T Auxiliares-Indutores , Tecido Linfoide , Linhagem da Célula
7.
Immunol Rev ; 315(1): 11-30, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929134

RESUMO

It has been over three decades since Drs. Herzenberg and Herzenberg proposed the layered immune system hypothesis, suggesting that different types of stem cells with distinct hematopoietic potential produce specific immune cells. This layering of immune system development is now supported by recent studies showing the presence of fetal-derived immune cells that function in adults. It has been shown that various immune cells arise at different embryonic ages via multiple waves of hematopoiesis from special endothelial cells (ECs), referred to as hemogenic ECs. However, it remains unknown whether these fetal-derived immune cells are produced by hematopoietic stem cells (HSCs) during the fetal to neonatal period. To address this question, many advanced tools have been used, including lineage-tracing mouse models, cellular barcoding techniques, clonal assays, and transplantation assays at the single-cell level. In this review, we will review the history of the search for the origins of HSCs, B-1a progenitors, and mast cells in the mouse embryo. HSCs can produce both B-1a and mast cells within a very limited time window, and this ability declines after embryonic day (E) 14.5. Furthermore, the latest data have revealed that HSC-independent adaptive immune cells exist in adult mice, which implies more complicated developmental pathways of immune cells. We propose revised road maps of immune cell development.


Assuntos
Sistema Imunitário , Sistema Imunitário/citologia , Sistema Imunitário/crescimento & desenvolvimento , Humanos , Animais , Hematopoese , Embrião de Mamíferos/citologia , Células-Tronco Hematopoéticas/citologia , Linfócitos/citologia , Linhagem da Célula
8.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35043940

RESUMO

Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/citologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Células Mieloides/metabolismo , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
9.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919128

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.


Assuntos
Aorta/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Aorta/embriologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Células-Tronco Hematopoéticas/citologia , Mutação com Perda de Função , Células Mieloides/citologia , Células Mieloides/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Proc Natl Acad Sci U S A ; 119(13): e2119051119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35333649

RESUMO

SignificanceHematopoietic stem cells (HSCs) are generated from specialized endothelial cells, called hemogenic endothelial cells (HECs). It has been debated whether HECs and non-HSC-forming conventional endothelial cells (cECs) arise from a common precursor or represent distinct lineages. Moreover, the molecular basis underlying their distinct fate determination is poorly understood. We use photoconvertible labeling, time-lapse imaging, and single-cell RNA-sequencing analysis to trace the lineage of HECs. We discovered that HECs and cECs arise from a common hemogenic angioblast precursor, and their distinct fate is determined by high or low dosage of Etv2, respectively. Our results illuminate the lineage origin and a mechanism on the fate determination of HECs, which may enhance the understanding on the ontogeny of HECs in vertebrates.


Assuntos
Hemangioblastos , Hematopoese , Animais , Diferenciação Celular , Endotélio Vascular
11.
Annu Rev Physiol ; 83: 17-37, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035429

RESUMO

Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.


Assuntos
Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular/fisiologia , Hemangioblastos/fisiologia , Hematopoese/fisiologia , Humanos
12.
EMBO J ; 39(8): e104270, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32149421

RESUMO

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium in cluster structures that protrude into the embryonic aortic lumen. Although much is known about the molecular characteristics of the developing hematopoietic cells, we lack a complete understanding of their origin and the three-dimensional organization of the niche. Here, we use advanced live imaging techniques of organotypic slice cultures, clonal analysis, and mathematical modeling to show the two-step process of intra-aortic hematopoietic cluster (IACH) formation. First, a hemogenic progenitor buds up from the endothelium and undergoes division forming the monoclonal core of the IAHC. Next, surrounding hemogenic cells are recruited into the IAHC, increasing their size and heterogeneity. We identified the Notch ligand Dll4 as a negative regulator of the recruitment phase of IAHC. Blocking of Dll4 promotes the entrance of new hemogenic Gfi1+ cells into the IAHC and increases the number of cells that acquire HSC activity. Mathematical modeling based on our data provides estimation of the cluster lifetime and the average recruitment time of hemogenic cells to the cluster under physiologic and Dll4-inhibited conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aorta/embriologia , Proteínas de Ligação ao Cálcio/genética , Divisão Celular , Células Progenitoras Endoteliais/fisiologia , Feminino , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos
13.
Stem Cells ; 41(7): 685-697, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220178

RESUMO

Several differentiation protocols enable the emergence of hematopoietic stem and progenitor cells (HSPCs) from human-induced pluripotent stem cells (iPSCs), yet optimized schemes to promote the development of HSPCs with self-renewal, multilineage differentiation, and engraftment potential are lacking. To improve human iPSC differentiation methods, we modulated WNT, Activin/Nodal, and MAPK signaling pathways by stage-specific addition of small-molecule regulators CHIR99021, SB431542, and LY294002, respectively, and measured the impact on hematoendothelial formation in culture. Manipulation of these pathways provided a synergy sufficient to enhance formation of arterial hemogenic endothelium (HE) relative to control culture conditions. Importantly, this approach significantly increased production of human HSPCs with self-renewal and multilineage differentiation properties, as well as phenotypic and molecular evidence of progressive maturation in culture. Together, these findings provide a stepwise improvement in human iPSC differentiation protocols and offer a framework for manipulating intrinsic cellular cues to enable de novo generation of human HSPCs with functionality in vivo.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativinas/metabolismo , Diferenciação Celular , Transdução de Sinais
14.
J Cell Physiol ; 238(1): 179-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436185

RESUMO

Hemogenic endothelial (HE) cells are specialized endothelial cells to give rise to hematopoietic stem/progenitor cells during hematopoietic development. The underlying mechanisms that regulate endothelial-to-hematopoietic transition (EHT) of human HE cells are not fully understand. Here, we identified platelet endothelial aggregation receptor-1 (PEAR1) as a novel regulator of early hematopoietic development in human pluripotent stem cells (hPSCs). We found that the expression of PEAP1 was elevated during hematopoietic development. A subpopulation of PEAR1+ cells overlapped with CD34+ CD144+ CD184+ CD73- arterial-type HE cells. Transcriptome analysis by RNA sequencing indicated that TAL1/SCL, GATA2, MYB, RUNX1 and other key transcription factors for hematopoietic development were mainly expressed in PEAR1+ cells, whereas the genes encoding for niche-related signals, such as fibronectin, vitronectin, bone morphogenetic proteins and jagged1, were highly expressed in PEAR1- cells. The isolated PEAR1+ cells exhibited significantly greater EHT capacity on endothelial niche, compared with the PEAR1- cells. Colony-forming unit (CFU) assays demonstrated the multilineage hematopoietic potential of PEAR1+ -derived hematopoietic cells. Furthermore, PEAR1 knockout in hPSCs by CRISPR/Cas9 technology revealed that the hematopoietic differentiation was impaired, resulting in decreased EHT capacity, decreased expression of hematopoietic-related transcription factors, and increased expression of niche-related signals. In summary, this study revealed a novel role of PEAR1 in balancing intrinsic and extrinsic signals for early hematopoietic fate decision.


Assuntos
Hemangioblastos , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Receptores de Superfície Celular , Humanos , Diferenciação Celular , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo
15.
Stem Cells ; 40(3): 332-345, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294553

RESUMO

Hematopoietic stem cell (HSC)-independent hematopoiesis from hemogenic endothelial cells (HECs) in the mouse embryo has been recognized as a source of tissue-resident hematopoietic cells in adult mice. Connective tissue mast cells (MCs) have been reported to originate from VE-cadherin (VE-cad)-expressing HECs in the yolk sac and embryo proper (EP) by a VE-cad-Cre-mediated lineage-tracing analysis. However, it remains unclear whether MCs are generated via a conventional HSC-dependent hematopoietic differentiation pathway, or whether through a fast-track pathway bypassing the emergence of HSCs. Here, we investigated whether EP-derived VE-cad+ cells differentiate into MCs independently of HSCs. VE-cad+ cells isolated from the embryonic day (E) 9.5-10.5 EP robustly formed connective tissue-type MCs in a newly established co-culture system using PA6 stromal cells. In contrast, bone marrow (BM) reconstitution assays of cultured cells indicated that E9.5 VE-cad+ cells did not differentiate into transplantable HSCs in this culture condition. Lymphoid-biased HSCs with a limited self-renewal capacity were occasionally detected in some cultures of E10.5 VE-cad+ cells, while MC growth was constantly observed in all cultures examined. HSCs purified from adult BM required a more extended culture period to form MCs in the PA6 co-culture than the embryonic VE-cad+ cells. Furthermore, E9.5-E10.5 VE-cad+ cells contributed to tissue-resident MCs in postnatal mice when transplanted into the peritoneal cavity of newborn mice. These results suggest that EP-derived VE-cad+ cells generate MCs independently of HSC development in vitro and possess the potential of generating connective tissue MCs in vivo, although the exact differentiation program remains unsolved.


Assuntos
Hemangioblastos , Mastócitos , Animais , Antígenos CD , Caderinas , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Camundongos
16.
Adv Exp Med Biol ; 1442: 1-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228955

RESUMO

Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.


Assuntos
Células Endoteliais , Imunidade Inata , Camundongos , Humanos , Animais , Linfócitos , Células-Tronco Hematopoéticas , Hematopoese , Diferenciação Celular , Embrião de Mamíferos , Mamíferos , Linhagem da Célula
17.
Stem Cells ; 39(5): 636-649, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33480126

RESUMO

Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.


Assuntos
Angiotensina II/genética , Angiotensinogênio/genética , Células-Tronco Hematopoéticas/citologia , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/genética , Animais , Aorta/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Antígenos Comuns de Leucócito/genética , Camundongos , Peptídeos/farmacologia , Peptidil Dipeptidase A/genética , Receptor Tipo 2 de Angiotensina/genética , Renina/genética , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia
18.
Cell Mol Life Sci ; 78(9): 4143-4160, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559689

RESUMO

In vitro generation of hematopoietic cells and especially hematopoietic stem cells (HSCs) from human pluripotent stem cells (PSCs) are subject to intensive research in recent decades, as these cells hold great potential for regenerative medicine and autologous cell replacement therapies. Despite many attempts, in vitro, de novo generation of bona fide HSCs remains challenging, and we are still far away from their clinical use, due to insufficient functionality and quantity of the produced HSCs. The challenges of generating PSC-derived HSCs are already apparent in early stages of hemato-endothelial specification with the limitation of recapitulating complex, dynamic processes of embryonic hematopoietic ontogeny in vitro. Further, these current shortcomings imply the incompleteness of our understanding of human ontogenetic processes from embryonic mesoderm over an intermediate, specialized hemogenic endothelium (HE) to their immediate progeny, the HSCs. In this review, we examine the recent investigations of hemato-endothelial ontogeny and recently reported progress for the conversion of PSCs and other promising somatic cell types towards HSCs with the focus on the crucial and inevitable role of the HE to achieve the long-standing goal-to generate therapeutically applicable PSC-derived HSCs in vitro.


Assuntos
Endotélio/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Endotélio/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887039

RESUMO

Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The challenges and issues surrounding the use of EPCs and the current paradigm being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. It has been observed that controversies have emerged regarding the isolation techniques and classification and origin of EPCs. This manuscript attempts to highlight the concept of EPCs in a sequential manner, from the initial discovery to the present (origin, sources of EPCs, isolation, and identification techniques). Human and murine EPC marker diversity is also discussed. Additionally, this manuscript is aimed at summarizing our current and future prospects regarding the crosstalk of EPCs with the biology of hematopoietic cells and culture techniques in the context of regeneration-associated cells (RACs).


Assuntos
Células Progenitoras Endoteliais , Animais , Biomarcadores , Humanos , Camundongos , Medicina Regenerativa/métodos
20.
Development ; 145(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29361566

RESUMO

Hematopoietic cells differentiate during embryogenesis from a population of endothelial cells called hemogenic endothelium (HE) in a process called the endothelial-to-hematopoietic transition (EHT). The transcription factor Runx1 is required for EHT, but for how long and which endothelial cells are competent to respond to Runx1 are not known. Here, we show that the ability of Runx1 to induce EHT in non-hemogenic endothelial cells depends on the anatomical location of the cell and the developmental age of the conceptus. Ectopic expression of Runx1 in non-hemogenic endothelial cells between embryonic day (E) 7.5 and E8.5 promoted the formation of erythro-myeloid progenitors (EMPs) specifically in the yolk sac, the dorsal aorta and the heart. The increase in EMPs was accompanied by a higher frequency of HE cells able to differentiate into EMPs in vitro Expression of Runx1 just 1 day later (E8.5-E9.5) failed to induce the ectopic formation of EMPs. Therefore, endothelial cells, located in specific sites in the conceptus, have a short developmental window of competency during which they can respond to Runx1 and differentiate into blood cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hematopoese/fisiologia , Animais , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Gravidez , Saco Vitelino/citologia , Saco Vitelino/embriologia , Saco Vitelino/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa