Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408142, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818643

RESUMO

[FeFe] hydrogenases demonstrate remarkable catalytic efficiency in hydrogen evolution and oxidation processes. However, susceptibility of these enzymes to oxygen-induced degradation impedes their practical deployment in hydrogen-production devices and fuel cells. Recent investigations into the oxygen-stable (Hinact) state of the H-cluster revealed its inherent capacity to resist oxygen degradation. Herein, we present findings on Cl- and SH-bound [2Fe-2S] complexes, bearing relevance to the oxygen-stable state within a biological context. A characteristic attribute of these complexes is the terminal Cl-/SH- ligation to the iron center bearing the CO bridge. Structural analysis of the t-Cl demonstrates a striking resemblance to the Hinact state of DdHydAB and CbA5H. The t-Cl/t-SH exhibit reversible oxidation, with both redox species, electronically, being the first biomimetic analogs to the Htrans and Hinact states. These complexes exhibit notable resistance against oxygen-induced decomposition, supporting the potential oxygen-resistant nature of the Htrans and Hinact states. The swift reductive release of the Cl-/SH-group demonstrates its labile and kinetically controlled binding. The findings garnered from these investigations offer valuable insights into properties of the enzymatic O2-stable state, and key factors governing deactivation and reactivation conversion. This work contributes to the advancement of bio-inspired molecular catalysts and the integration of enzymes and artificial catalysts into H2-evolution devices and fuel-cell applications.

2.
Trends Biochem Sci ; 44(5): 391-400, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655166

RESUMO

During fermentation FOF1 hydrolyzes ATP, coupling proton transport to proton-motive force (pmf) generation. Despite that, pmf generated by ATP hydrolysis does not satisfy the energy budget of a fermenting cell. However, pmf can also be generated by extrusion of weak organic acids such as lactate and by hydrogen cycling catalyzed by hydrogenases (Hyds). Here we highlight recent advances in our understanding of how the transport of weak organic acids and enzymes contributes to pmf generation during fermentation. The potential impact of these processes on metabolism and energy conservation during microbial fermentation have been overlooked and they not only expand on Mitchell's chemiosmotic theory but also are of relevance to the fields of microbial biochemistry and human and animal health.


Assuntos
Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Metabolismo Energético , Fermentação , Hidrogenase/metabolismo , Animais , Biocatálise , Humanos , Hidrólise
3.
Chemistry ; 29(38): e202300569, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015870

RESUMO

Three hexacarbonyl diiron dithiolate complexes [Fe2 (CO)6 (µ-(SCH2 )2 X)] with different substituted bridgeheads (X=CH2 , CEt2 , CBn2 (Bn=CH2 C6 H5 )), have been studied under the same experimental conditions by cyclic voltammetry in dichloromethane [NBu4 ][PF6 ] 0.2 M. DFT calculations were performed to rationalize the mechanism of reduction of these compounds. The three complexes undergo a two-electron transfer whose the mechanism depends on the bulkiness of the dithiolate bridge, which involves a different timing of the structural changes (Fe-S bond cleavage, inversion of conformation and CO bridging) vs redox steps. The introduction of a bulky group in the dithiolate linker has obviously an effect on normally ordered (as for propanedithiolate (pdt)) or inverted (pdtEt2 , pdtBn2 ) reduction potentials. Et→Bn replacement is not theoretically predicted to alter the geometry and energy of the most stable mono-reduced and bi-reduced forms but such a replacement alters the kinetics of the electron transfer vs the structural changes.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Biomimética , Transporte de Elétrons , Oxirredução
4.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139142

RESUMO

Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Filogenia , Ferredoxinas/metabolismo , Fotossíntese , Hidrogênio/química , Proteínas Ferro-Enxofre/metabolismo
5.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239950

RESUMO

The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.


Assuntos
Hidrogenase , Prótons , Hidrogênio/química , Oxirredução , Hidrogenase/química , Fotossíntese , Catálise
6.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771068

RESUMO

Hydrogen with high energy content is considered to be a promising alternative clean energy source. Biohydrogen production through microbes provides a renewable and immense hydrogen supply by utilizing raw materials such as inexhaustible natural sunlight, water, and even organic waste, which is supposed to solve the two problems of "energy supply and environment protection" at the same time. Hydrogenases and nitrogenases are two classes of key enzymes involved in biohydrogen production and can be applied under different biological conditions. Both the research on enzymatic catalytic mechanisms and the innovations of enzymatic techniques are important and necessary for the application of biohydrogen production. In this review, we introduce the enzymatic structures related to biohydrogen production, summarize recent enzymatic and genetic engineering works to enhance hydrogen production, and describe the chemical efforts of novel synthetic artificial enzymes inspired by the two biocatalysts. Continual studies on the two types of enzymes in the future will further improve the efficiency of biohydrogen production and contribute to the economic feasibility of biohydrogen as an energy source.


Assuntos
Hidrogenase , Nitrogenase , Nitrogenase/metabolismo , Fermentação , Biocombustíveis , Hidrogênio/análise
7.
Molecules ; 29(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38202704

RESUMO

Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.


Assuntos
Selênio , Humanos , Cisteína , Selenocisteína , Enxofre , Oxirredução , Biologia
8.
Angew Chem Int Ed Engl ; 62(43): e202311896, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671593

RESUMO

Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth-abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin-streptavidin technology. By incorporating bio-mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo-genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional-group tolerance. According to QM/MM calculations and X-ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base-meal cofactors for enantioselective organic synthesis.


Assuntos
Hidrogenase , Metaloproteínas , Biotina/química , Estreptavidina/química , Hidrogenase/química , Manganês , Metaloproteínas/química , Catálise
9.
J Dairy Sci ; 105(10): 8569-8585, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35346473

RESUMO

Ruminants are one of the largest sources of global CH4 emissions. This enteric CH4 is exclusively produced by methanogenic archaea as a natural product during microbial fermentation in the reticulorumen. As CH4 formation leads to a gross energy loss for the ruminant host and is also an environmental issue, several CH4 mitigation approaches have been investigated, but results have been inconsistent, which may be partially attributed to a lack of understanding of the mechanistic basis of methanogenesis and the effect of inhibitors on individual methanogenic lineages and other fermenting microbes in the rumen. Methanogenic archaea are obligatory anaerobes that can reduce CO2, methanol, or methylamines or cleave acetate to form CH4. Although methanogens work toward a common goal of generating energy through the formation of CH4, individual methanogenic lineages differ in their physiological and metabolic capabilities, which can differentially affect H2 transactions and CH4 formation. Using advanced omic approaches, recent research has revealed that less abundant methanol-utilizing Methanosphaera and methylamine- and methanol-utilizing Methanomassiliicoccales lineages are positively correlated with CH4 emissions and may have a greater share in overall CH4 production compared with more abundant CO2-reducing methanogens than previously thought. These data imply that the diversity as well as the abundance of methanogens is important in CH4 formation, and that this diversity is influenced by H2 availability and interactions within and between H2-producing microbes in the rumen. These complex interactions between microbes and H2 are further influenced by variations in dietary, host, and environmental conditions. This review discusses critical knowledge gaps underlying methanogen diversity and its link to CH4 formation, formation of specific bacteria-archaeal cohorts, and how H2 production and utilization are regulated between these cohorts during normal and inhibited methanogenesis. Addressing these knowledge gaps has the potential to lead to the development of novel strategies or to complement existing strategies to effectively reduce CH4 formation while also improving productivity in dairy cows.


Assuntos
Produtos Biológicos , Microbiota , Animais , Archaea , Dióxido de Carbono/metabolismo , Bovinos , Feminino , Fermentação , Metano , Metanol/metabolismo , Metilaminas/metabolismo , Microbiota/fisiologia , Rúmen/metabolismo , Ruminantes/metabolismo
10.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897863

RESUMO

The behaviour of triazolylidene ligands coordinated at a {Fe2(CO)5(µ-dithiolate)} core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring a mesoionic carbene (MIC) [Fe2(CO)5(Pmpt)(µ-pdt)] (1; Pmpt = 1-phenyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene; pdt = propanedithiolate) was synthesized and characterized by IR, 1H, 13C{1H} NMR spectroscopies, elemental analyses, X-ray diffraction ,and cyclic voltammetry. Comparison with the spectroscopic characteristics of its analogue [Fe2(CO)5(Pmbt)(µ-pdt)] (2; Pmbt = 1-phenyl-3-methyl-4-butyl-1,2,3-triazol-5-ylidene) showed the effect of the replacement of a n-butyl by a phenyl group in the 1,2,3-triazole heterocycle. A DFT study was performed to rationalize the electronic behaviour of 1, 2 upon the transfer of two electrons and showed that such carbenes do not behave as redox ligands. With highly perfluorinated carbenes, electronic communication between the di-iron site and the triazole cycle is still limited, suggesting low redox properties of MIC ligands used in this study. Finally, although the catalytic performances of 2 towards proton reduction are weak, the protonation process after a two-electron reduction of 2 was examined by DFT and revealed that the protonation process is favoured by S-protonation but the stabilized diprotonated intermediate featuring a {Fe-H⋯H-S} interaction does not facilitate the release of H2 and may explain low efficiency towards HER (Hydrogen Evolution Reaction).


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Ferro/química , Proteínas Ferro-Enxofre/química , Ligantes , Prótons , Triazóis
11.
Cell Mol Life Sci ; 77(8): 1461-1481, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31630229

RESUMO

The reversible interconversion of molecular hydrogen and protons is one of the most ancient microbial metabolic reactions and catalyzed by hydrogenases. A widespread yet largely enigmatic group comprises multisubunit [NiFe] hydrogenases, that directly couple H2 metabolism to the electrochemical ion gradient across the membranes of bacteria and of archaea. These complexes are collectively referred to as energy-converting hydrogenases (Ech), as they reversibly transform redox energy into physicochemical energy. Redox energy is typically provided by a low potential electron donor such as reduced ferredoxin to fuel H2 evolution and the establishment of a transmembrane electrochemical ion gradient ([Formula: see text]). The [Formula: see text] is then utilized by an ATP synthase for energy conservation by generating ATP. This review describes the modular structure/function of Ech complexes, focuses on insights into the energy-converting mechanisms, describes the evolutionary context and delves into the implications of relying on an Ech complex as respiratory enzyme for microbial metabolism.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Trifosfato de Adenosina/metabolismo , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Oxirredução
12.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443440

RESUMO

Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin (LS) and catalytic high-spin (HS) hemes in nitrite reductases, (iii) different types of Fe-S clusters, such as 3Fe-4S and 4Fe-4S centers in di-cluster ferredoxins, and (iv) bi-metallic center and ET Fe-S clusters in hydrogenases. IR spectroscopy can provide unmatched molecular details on specific enzymes like hydrogenases that possess catalytic centers coordinated by CO and CN- ligands, which exhibit spectrally well separated IR bands. This article reviews the work on metalloproteins for which vibrational spectroscopy has ensured advances in understanding structural and mechanistic properties, including multiple heme-containing proteins, such as nitrite reductases that house a notable total of 28 hemes in a functional unit, respiratory chain complexes, and hydrogenases that carry out the most fundamental functions in cells.


Assuntos
Metaloproteínas/química , Análise Espectral Raman , Heme/química , Proteínas Ferro-Enxofre/química , Oxirredução , Espectrofotometria Infravermelho
13.
Angew Chem Int Ed Engl ; 60(49): 25839-25845, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34595813

RESUMO

The active site of [FeFe]-hydrogenase (H2 ase) is preorganized with an amine (azadithiolate) as a proton relay and a [4Fe4S] subunit as an electron reservoir, which together lower the overpotential for proton reduction and hydrogen oxidation by multiple-site concerted proton-electron transfer (MS-CPET). Herein, we report a mononuclear manganese complex, fac-[Mn(CO)3 (6-(2-hydroxyphenol)-2-pyridine-2-quinoline) Br] (1), as a rare model to fully mimic the functions of the H2 ase. In 1, a redox-active bidentate ligand with a pendent phenol replicates the roles of the electron reservoir and the proton relay in the enzyme. Experimental and theoretical studies revealed two consecutive MS-CPET processes in the catalytic cycle, in each of which an electron stored in the reductive ligand and a proton at the proximal phenol moiety are transferred to the Mn center in a concerted way. By virtue of this mechanism, complex 1 exhibited a low overpotential comparable to that of natural enzyme in electrochemical hydrogen production using phenol as a proton source.


Assuntos
Complexos de Coordenação/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Manganês/metabolismo , Prótons , Complexos de Coordenação/química , Teoria da Densidade Funcional , Transporte de Elétrons , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Manganês/química , Conformação Molecular
14.
Chemistry ; 26(55): 12494-12509, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449989

RESUMO

Hydrogen is a clean and sustainable form of fuel that can minimize our heavy dependence on fossil fuels as the primary energy source. The need of finding greener ways to generate H2 gas has ignited interest in the research community to synthesize catalysts that can produce H2 by the reduction of H+ . The natural H2 producing enzymes hydrogenases have served as an inspiration to produce catalytic metal centers akin to these native enzymes. In this article we describe recent advances in the design of a unique class of artificial hydrogen evolving catalysts that combine the features of the active site metal(s) surrounded by a polypeptide component. The examples of these biosynthetic catalysts discussed here include i) assemblies of synthetic cofactors with native proteins; ii) peptide-appended synthetic complexes; iii) substitution of native cofactors with non-native cofactors; iv) metal substitution from rubredoxin; and v) a reengineered Cu storage protein into a Ni binding protein. Aspects of key design considerations in the construction of these artificial biocatalysts and insights gained into their chemical reactivity are discussed.


Assuntos
Hidrogênio , Hidrogenase , Compostos Orgânicos/química , Catálise , Domínio Catalítico , Hidrogênio/química , Hidrogenase/química , Hidrogenase/metabolismo
15.
Macromol Rapid Commun ; 41(1): e1900424, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31631429

RESUMO

Small molecule biomimetics inspired by the active site of the [FeFe]-hydrogenase enzymes have shown promising electrocatalytic activity for hydrogen (H2 ) generation. However, most of the active-site mimics based on [2Fe-2S] clusters are not water-soluble which limits the use of these electrocatalysts to organic media. Polymer-supported [2Fe-2S] systems, in particular, single-site metallopolymer catalysts, have shown drastic improvements for electrocatalytic H2 generation in aqueous milieu. [2Fe-2S] complexes functionalized within well-defined macromolecular supports via covalent bonding have demonstrated water solubility, enhanced site-isolation, and improved chemical stability during catalysis. In this report, the synthesis of a new propanedithiolate (pdt)-[2Fe-2S] complex bearing a single α-bromoester moiety for use in atom transfer radical polymerization (ATRP) is demonstrated as a novel metalloinitiator to prepare water-soluble poly(2-dimethylaminoethyl methacrylate) grafted (PDMAEMA-g-[2Fe-2S]) metallopolymers. Using this approach, metallopolymers with controllable molecular weights (Mn = 5-40 kg mol-1 ) and low dispersity (D, Mw /Mn = 1.09-1.36) are prepared, which allows for the first time observation of the effect of the metallopolymers' chain length on the electrocatalytic activity. The ability to control the composition and molecular weight of these metallopolymers enables macromolecular engineering via ATRP of these materials to determine optimal structural features of metallopolymer catalysts for H2 production.


Assuntos
Hidrogênio/metabolismo , Ferro/química , Polímeros/química , Enxofre/química , Catálise , Domínio Catalítico , Complexos de Coordenação/química , Técnicas Eletroquímicas , Hidrogênio/química , Hidrogenase/química , Conformação Molecular , Peso Molecular , Polimerização , Polímeros/síntese química
16.
Int J Mol Sci ; 21(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935912

RESUMO

Three-dimensional structures of six closely related hydrogenases from purple bacteria were modeled by combining the template-based and ab initio modeling approach. The results led to the conclusion that there should be a 4Fe3S cluster in the structure of these enzymes. Thus, these hydrogenases could draw interest for exploring their oxygen tolerance and practical applicability in hydrogen fuel cells. Analysis of the 4Fe3S cluster's microenvironment showed intragroup heterogeneity. A possible function of the C-terminal part of the small subunit in membrane binding is discussed. Comparison of the built models with existing hydrogenases of the same subgroup (membrane-bound oxygen-tolerant hydrogenases) was carried out. Analysis of intramolecular interactions in the large subunits showed statistically reliable differences in the number of hydrophobic interactions and ionic interactions. Molecular tunnels were mapped in the models and compared with structures from the PDB. Protein-protein docking showed that these enzymes could exchange electrons in an oligomeric state, which is important for oxygen-tolerant hydrogenases. Molecular docking with model electrode compounds showed mostly the same results as with hydrogenases from E. coli, H. marinus, R. eutropha, and S. enterica; some interesting results were shown in case of HupSL from Rba. sphaeroides and Rvi. gelatinosus.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Simulação de Dinâmica Molecular , Proteobactérias/enzimologia , Homologia de Sequência de Aminoácidos , Microbiologia Industrial , Conformação Proteica , Proteobactérias/classificação , Proteobactérias/genética
17.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824336

RESUMO

Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production. Additionally, activities of hydrogenases isolated from either recombinant organisms or in vivo/in vitro maturation approaches were systematically compared, and future perspectives for this research area are discussed.


Assuntos
Proteínas de Bactérias/genética , Hidrogenase/genética , Microbiologia Industrial/métodos , Proteínas Ferro-Enxofre/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Engenharia de Proteínas/métodos
18.
Angew Chem Int Ed Engl ; 59(38): 16506-16510, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32432842

RESUMO

The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual-gas diffusion electrode H2 /O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer-based high-current-density H2 -oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm-2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer-based biofuel cell with outstanding power densities of 5.4 mW cm-2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2 .


Assuntos
Biocombustíveis , Desulfovibrio desulfuricans/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Oxigênio/metabolismo , Polímeros/metabolismo , Fontes de Energia Bioelétrica , Desulfovibrio desulfuricans/química , Desulfovibrio desulfuricans/enzimologia , Difusão , Eletrodos , Hidrogênio/química , Hidrogenase/química , Estrutura Molecular , Oxirredução , Oxigênio/química , Polímeros/química
19.
Angew Chem Int Ed Engl ; 59(42): 18485-18489, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32614491

RESUMO

Hydrogenase enzymes are excellent proton reduction catalysts and therefore provide clear blueprints for the development of nature-inspired synthetic analogues. Mimicking their catalytic center is straightforward but mimicking the protein matrix around the active site and all its functions remains challenging. Synthetic models lack this precisely controlled second coordination sphere that provides substrate preorganization and catalyst stability and, as a result, their performances are far from those of the natural enzyme. In this contribution, we report a strategy to easily introduce a specific yet customizable second coordination sphere around synthetic hydrogenase models by encapsulation inside M12 L24 cages and, at the same time, create a proton-rich nano-environment by co-encapsulation of ammonium salts, effectively providing substrate preorganization and intermediates stabilization. We show that catalyst encapsulation in these nanocages reduces the catalytic overpotential for proton reduction by 250 mV as compared to the uncaged catalyst, while the proton-rich nano-environment created around the catalyst ensures that high catalytic rates are maintained.

20.
Angew Chem Int Ed Engl ; 59(27): 10929-10933, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32202370

RESUMO

We have developed a scalable platform that employs electrolysis for an in vitro synthetic enzymatic cascade in a continuous flow reactor. Both H2 and O2 were produced by electrolysis and transferred through a gas-permeable membrane into the flow system. The membrane enabled the separation of the electrolyte from the biocatalysts in the flow system, where H2 and O2 served as electron mediators for the biocatalysts. We demonstrate the production of methylated N-heterocycles from diamines with up to 99 % product formation as well as excellent regioselective labeling with stable isotopes. Our platform can be applied for a broad panel of oxidoreductases to exploit electrical energy for the synthesis of fine chemicals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa