Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 288(27): 19614-24, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23689371

RESUMO

TDP-43 (TAR DNA-binding protein of 43 kDa) is a major deposited protein in amyotrophic lateral sclerosis and frontotemporal dementia with ubiquitin. A great number of genetic mutations identified in the flexible C-terminal region are associated with disease pathologies. We investigated the molecular determinants of TDP-43 aggregation and its underlying mechanisms. We identified a hydrophobic patch (residues 318-343) as the amyloidogenic core essential for TDP-43 aggregation. Biophysical studies demonstrated that the homologous peptide formed a helix-turn-helix structure in solution, whereas it underwent structural transformation from an α-helix to a ß-sheet during aggregation. Mutation or deletion of this core region significantly reduced the aggregation and cytoplasmic inclusions of full-length TDP-43 (or TDP-35 fragment) in cells. Thus, structural transformation of the amyloidogenic core initiates the aggregation and cytoplasmic inclusion formation of TDP-43. This particular core region provides a potential therapeutic target to design small-molecule compounds for mitigating TDP-43 proteinopathies.


Assuntos
Amiloide/metabolismo , Proteínas de Ligação a DNA/metabolismo , Corpos de Inclusão/metabolismo , Amiloide/genética , Animais , Caenorhabditis elegans , Proteínas de Ligação a DNA/genética , Desenho de Fármacos , Células HeLa , Sequências Hélice-Volta-Hélice , Humanos , Interações Hidrofóbicas e Hidrofílicas , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Estrutura Terciária de Proteína , Proteinopatias TDP-43/tratamento farmacológico , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
2.
Cell Rep ; 43(4): 114066, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578823

RESUMO

In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm. We also show that the S-phase B-cyclin hydrophobic patch is required for centrosomal localization but not for S phase. We propose that the hydrophobic patch is essential for mitosis due to its requirement for the local concentration of cyclin-CDK with CDK substrates and regulators at the centrosome. Our findings emphasize the central importance of the centrosome as a hub coordinating cell-cycle control and explain why the cyclin hydrophobic patch is essential for mitosis.


Assuntos
Ciclo Celular , Centrossomo , Ciclina B , Quinases Ciclina-Dependentes , Mitose , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrossomo/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Interações Hidrofóbicas e Hidrofílicas , Humanos
3.
Biophys Chem ; 296: 106981, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871366

RESUMO

Antimicrobial peptides (AMPs) with cell membrane lysing capability are considered potential candidates for the development of the next generation of antibiotics. Designing novel AMPs requires an in-depth understanding of the mechanism of action of the peptides. In this work, we used various biophysical techniques including 31P solid-state NMR to examine the interaction of model membranes with amphipathic de novo-designed peptides. Two such peptides, MSI-78 and VG16KRKP, were designed with different hydrophobicity and positive charges. The model lipid membranes were constituted by mixing lipids of varying degrees of 'area per lipid' (APL), which directly affected the packing properties of the membrane. The observed emergence of the isotropic peak in 31P NMR spectra as a function of time is a consequence of the fragmentation of the membrane mediated by the peptide interaction. The factors such as the charges, overall hydrophilicity of the AMPs, as well as lipid membrane packing, contributed to the kinetics of membrane fragmentation. Furthermore, we anticipate the designed AMPs follow the carpet and toroidal pore mechanisms when lysing the cell membrane. This study highlights the significance of the effect of the overall charges and the hydrophobicity of the novel AMPs designed for antimicrobial activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Bicamadas Lipídicas/química
4.
Toxicon ; 189: 56-64, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212100

RESUMO

Jingzhaotoxin-I, -III, -IV, -XIII, and -35 (JZTX-I, -III, -IV, -XIII, and -35), gating modifier toxins isolated from the venom of the Chinese tarantula Chilobrachys Jingzhao, were reported to act on cardiac sodium channels and Kv channels. JZTX-I and JZTX-XIII inhibited the hERG channel with the IC50 value of 626.9 nM and 612.6 nM, respectively. JZTX-III, -IV, and -35 share high sequence similarity with JZTX-I and JZTX-XIII, but they showed much lower affinity on the hERG channel compared with JZTX-I and JZTX-XIII. The inhibitory potency of the above five toxins on the hERG channel was not in accordance with their affinity on the Nav1.5 and Kv2.1 channels, indicating that the bioactive surfaces of the five toxins interacting with hERG, Nav1.5 and Kv2.1 are at least in part different. Structure-function analysis of the gating modifier toxins suggested that the functional bioactive surface binding to the hERG channel consists of a conserved hydrophobic patch, surrounding acidic residues (Glu10 in JZTX-XIII, Glu11 in JZTX-I), and basic residues which may be different from residues binding to the Kv2.1 channel.


Assuntos
Canal de Potássio ERG1/efeitos dos fármacos , Venenos de Aranha/toxicidade , Animais , Ativação do Canal Iônico/efeitos dos fármacos
5.
Viruses ; 13(11)2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835122

RESUMO

Viral protein 35 (VP35) of Ebola virus (EBOV) is a multifunctional protein that mainly acts as a viral polymerase cofactor and an interferon antagonist. VP35 interacts with the viral nucleoprotein (NP) and double-stranded RNA for viral RNA transcription/replication and inhibition of type I interferon (IFN) production, respectively. The C-terminal portion of VP35, which is termed the IFN-inhibitory domain (IID), is important for both functions. To further identify critical regions in this domain, we analyzed the physical properties of the surface of VP35 IID, focusing on hydrophobic patches, which are expected to be functional sites that are involved in interactions with other molecules. Based on the known structural information of VP35 IID, three hydrophobic patches were identified on its surface and their biological importance was investigated using minigenome and IFN-ß promoter-reporter assays. Site-directed mutagenesis revealed that some of the amino acid substitutions that were predicted to disrupt the hydrophobicity of the patches significantly decreased the efficiency of viral genome replication/transcription due to reduced interaction with NP, suggesting that the hydrophobic patches might be critical for the formation of a replication complex through the interaction with NP. It was also found that the hydrophobic patches were involved in the IFN-inhibitory function of VP35. These results highlight the importance of hydrophobic patches on the surface of EBOV VP35 IID and also indicate that patch analysis is useful for the identification of amino acid residues that directly contribute to protein functions.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola/virologia , Proteínas do Nucleocapsídeo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Domínios Proteicos , Replicação Viral
6.
Front Pharmacol ; 10: 357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040778

RESUMO

Kv4 potassium channels are responsible for transient outward K+ currents in the cardiac action potential (AP). Previous experiments by our group demonstrated that Jingzhaotoxin-V (JZTX-V) selectively inhibits A-type potassium channels. However, the specific effects of JZTX-V on the transient outward (Ito) current of cardiomyocytes and underlying mechanism of action remain unclear. In the current study, 100 nM JZTX-V effectively inhibited the Ito current and extended the action potential duration (APD) of neonatal rat ventricular myocytes (NRVM). We further analyzed the effects of JZTX-V on Kv4.2, a cloned channel believed to underlie the Ito current in rat cardiomyocytes. JZTX-V inhibited the Kv4.2 current with a half-maximal inhibitory concentration (IC50) of 13 ± 1.7 nM. To establish the molecular mechanism underlying the inhibitory action of JZTX-V on Kv4.2, we performed alanine scanning mutagenesis of Kv4.2 and JZTX-V and assessed the effects of the mutations on binding activities of the proteins. Interestingly, the Kv4.2 mutations V285A, F289A, and V290A reduced the affinity for JZTX-V while I275A and L277A increased the affinity for JZTX-V. Moreover, mutation of positively charged residues (R20 and K22) of JZTX-V and the hydrophobic patch (formed by W5, M6, and W7) led to a significant reduction in toxin sensitivity, indicating that the hydrophobic patch and electrostatic interactions played key roles in the binding of JZTX-V with Kv4.2. Data from our study have shed light on the specific roles and molecular mechanisms of JZTX-V in the regulation of Ito potassium channels and supported its utility as a potential novel antiarrhythmic drug.

7.
Virology ; 521: 158-168, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29936340

RESUMO

The V3 loop of the human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein (Env) becomes exposed after CD4 binding and contacts the coreceptor to mediate viral entry. Prior to CD4 engagement, a hydrophobic patch located at the tip of the V3 loop stabilizes the non-covalent association of gp120 with the Env trimer of HIV-1 subtype B strains. Here, we show that this conserved hydrophobic patch (amino acid residues 307, 309 and 317) contributes to gp120-trimer association in HIV-1 subtype C, HIV-2 and SIV. Changes that reduced the hydrophobicity of these V3 residues resulted in increased gp120 shedding and decreased Env-mediated cell-cell fusion and virus entry in the different primate immunodeficiency viruses tested. Thus, the hydrophobic patch is an evolutionarily conserved element in the tip of the gp120 V3 loop that plays an essential role in maintaining the stability of the pre-triggered Env trimer in diverse primate immunodeficiency viruses.


Assuntos
Proteína gp120 do Envelope de HIV/química , HIV-1/fisiologia , HIV-2/fisiologia , Multimerização Proteica , Vírus da Imunodeficiência Símia/fisiologia , Internalização do Vírus , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , HIV-2/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/genética , Estabilidade Proteica , Vírus da Imunodeficiência Símia/genética , Proteínas do Envelope Viral/genética
8.
MAbs ; 10(6): 890-900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110240

RESUMO

Monoclonal antibody (mAb) candidates from high-throughput screening or binding affinity optimization often contain mutations leading to liabilities for further development of the antibody, such as aggregation-prone regions and lack of solubility. In this work, we optimized a candidate integrin α11-binding mAb for developability using molecular modeling, rational design, and hydrophobic interaction chromatography (HIC). A homology model of the parental mAb Fv region was built, and this revealed hydrophobic patches on the surface of the complementarity-determining region loops. A series of 97 variants of the residues primarily responsible for the hydrophobic patches were expressed and their HIC retention times (RT) were measured. As intended, many of the computationally designed variants reduced the HIC RT compared to the parental mAb, and mutating residues that contributed most to hydrophobic patches had the greatest effect on HIC RT. A retrospective analysis was then performed where 3-dimentional protein property descriptors were evaluated for their ability to predict HIC RT using the current series of mAbs. The same descriptors were used to train a simple multi-parameter protein quantitative structure-property relationship model on this data, producing an improved correlation. We also extended this analysis to recently published HIC data for 137 clinical mAb candidates as well as 31 adnectin variants, and found that the surface area of hydrophobic patches averaged over a molecular dynamics sample consistently correlated to the experimental data across a diverse set of biotherapeutics.


Assuntos
Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão/métodos , Integrinas/química , Modelos Moleculares , Domínios Proteicos , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Desenho Assistido por Computador , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrinas/metabolismo , Ligação Proteica , Estudos Retrospectivos
9.
FEBS Open Bio ; 5: 454-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106520

RESUMO

The vertebrate egg coat, including mammalian zona pellucida, is an oocyte-specific extracellular matrix comprising two to six zona pellucida (ZP) glycoproteins. The egg coat plays important roles in fertilization, especially in species-specific interactions with sperm to induce the sperm acrosome reaction and to form the block to polyspermy. It is suggested that the physiological functions of the egg coat are mediated and/or regulated coordinately by peptide and carbohydrate moieties of the ZP glycoproteins that are spatially arranged in the egg coat, whereas a comprehensive understanding of the architecture of vertebrate egg-coat matrix remains elusive. Here, we deduced the orientations and/or distributions of chicken ZP glycoproteins, ZP1, ZP3 and ZPD, in the egg-coat matrix by confocal immunofluorescent microscopy, and in the ZP1-ZP3 complexes generated in vitro by co-immunoprecipitation assays. We further confirmed interdomain interactions of the ZP glycoproteins by far-Western blot analyses of the egg-coat proteins and pull-down assays of ZP1 in the serum, using recombinant domains of ZP glycoproteins as probes. Our results suggest that the ZP1 and ZP3 bind through their ZP-C domains to form the ZP1-ZP3 complexes and fibrils, which are assembled into bundles through interactions between the repeat domains of ZP1 to form the ZP1-ZP3 matrix, and that the ZPD molecules self-associate and bind to the ZP1-ZP3 matrix through its ZP-N and ZP-C domains to form the egg-coat matrix. Based on these results, we propose a tentative model for the architecture of the chicken egg-coat matrix that might be applicable to other vertebrate ones.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa