Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552612

RESUMO

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Assuntos
Chlamydomonas , Cílios , Chlamydomonas/citologia , Cílios/química , Cílios/ultraestrutura , Flagelos , Polissacarídeos , Proteínas
2.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38552624

RESUMO

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Assuntos
Chlamydomonas reinhardtii , Cílios , Glicoproteínas , Cílios/química , Glicoproteínas/química , Glicosilação , Hidroxiprolina/química , Plantas/metabolismo , Chlamydomonas reinhardtii/química
3.
Amino Acids ; 56(1): 21, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461423

RESUMO

Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Metformina , Distrofia Muscular de Duchenne , Humanos , Metformina/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Acidose Láctica/induzido quimicamente , Acidose Láctica/terapia , Hidroxiprolina , Cromatografia Gasosa-Espectrometria de Massas , Prolina , Hidroxilação , Distrofia Muscular de Duchenne/tratamento farmacológico , Ácido Láctico , Oxigenases de Função Mista/uso terapêutico , Hipoglicemiantes/efeitos adversos
4.
J Inherit Metab Dis ; 47(2): 280-288, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38200664

RESUMO

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Assuntos
Oxirredutases do Álcool , Mitocôndrias Hepáticas , Transaminases , Humanos , Mitocôndrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Fígado/metabolismo , Glioxilatos/metabolismo
5.
Plant Cell Rep ; 43(8): 202, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073636

RESUMO

KEY MESSAGE: E1 holoenzyme was extensively Hyp-O-glycosylated at the proline rich linker region in plants, which substantially increased the molecular size and improved the enzymatic digestibility of the biomass of transgenic plants. Thermophilic E1 endo-1,4-ß-glucanase derived from Acidothermus cellulolyticus has been frequently expressed in planta to reconstruct the plant cell wall to overcome biomass recalcitrance. However, the expressed holoenzyme exhibited a larger molecular size (~ 100 kDa) than the theoretical one (57 kDa), possibly due to posttranslational modifications in the recombinant enzyme within plant cells. This study investigates the glycosylation of the E1 holoenzyme expressed in tobacco plants and determines its impact on enzyme activity and biomass digestibility. The E1 holoenzyme, E1 catalytic domain (E1cd) and E1 linker (E1Lk) were each expressed in tobacco plants and suspension cells. The accumulation of holoenzyme was 2.0- to 2.3- times higher than that of E1cd. The proline-rich E1Lk region was extensively hydroxyproline-O-glycosylated with arabinogalactan polysaccharides. Compared with E1cd, the holoenzyme displayed a broader optimal temperature range (70 to 85 ºC). When grown in greenhouse, the expression of E1 holoenzyme induced notable phenotypic changes in plants, including delayed flowering and leaf variegation post-flowering. However, the final yield of plant biomass was not significantly affected. Finally, plant biomass engineering with E1 holoenzyme showed 1.7- to 1.8-fold higher saccharification efficiency than the E1cd lines and 2.4- to 2.7-fold higher than the wild-type lines, which was ascribed to the synergetic action of the E1Lk and cellulose binding module in reducing cell wall recalcitrance.


Assuntos
Biomassa , Celulase , Hidroxiprolina , Nicotiana , Plantas Geneticamente Modificadas , Glicosilação , Celulase/metabolismo , Celulase/genética , Nicotiana/genética , Nicotiana/metabolismo , Hidroxiprolina/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Caldicellulosiruptor/genética , Caldicellulosiruptor/metabolismo
6.
Int J Cosmet Sci ; 46(2): 297-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013225

RESUMO

OBJECTIVE: Advanced glycation end-products (AGEs) represent a large group of compounds generated by a non-enzymatic reaction between reducing sugars and amino groups. The formation and accumulation of AGEs in the skin lead to protein crosslinking, dermal stiffening and yellowing, which ultimately contribute to cutaneous ageing. Amino acids have been described to exhibit anti-glycation effects. The objective of this study was to understand the inhibitory role of the amino acid derivative N-acetyl-L-hydroxyproline (NAHP) as an anti-glycation active for human skin. METHODS: A cell-free assay investigating the inhibition of glycation of serum albumin by NAHP was used to determine the capability of NAHP to decrease AGE formation. Also, by assessing the amount of the AGE N-(carboxymethyl)lysine (CML) the anti-glycation abilities of NAHP were investigated utilizing dot blot analysis. The improvement of cell-matrix interaction by NAHP was determined in vitro using a glycated fibroblast-populated collagen lattice (FPCL) dermis model. In skin biopsies, AGE autofluorescence was determined after treatment with NAHP and/or glucose ex vivo. RESULTS: NAHP significantly and dose-dependently inhibited levels of AGEs, which were induced by the glycation of a protein solution. This decrease could be visualized by showing that the brownish appearance as well as the AGE-specific fluorescence of glucose-treated samples were reduced after the application of increasing amounts of NAHP. Also, CML formation was dose-dependently inhibited by NAHP. In FPCLs, the contractile capacity of fibroblasts was significantly disturbed after glycation. This could be prevented by the addition of NAHP. Compared to glyoxal-treated samples, the co-application of NAHP significantly decreased the diameter as well as the weight of glycated FPCLs. Ex vivo application of glucose to skin explants showed a higher AGE fluorescence signal compared to control explants. Co-treatment with NAHP and glucose decreased the level of AGE fluorescence in comparison to glucose-treated explants. CONCLUSION: These data provide clear evidence that under glycation stress conditions treatment with NAHP inhibited AGE formation in vitro and ex vivo and prevented the loss of cellular contractile forces in a glycated dermis model. Thus, NAHP obviously provides a beneficial treatment option to counteract AGE-related changes in human skin such as dermal stiffening and yellowish skin appearance.


OBJECTIF: Les produits finis de glycation avancée (AGE) représentent un grand groupe de composés générés par une réaction non enzymatique entre des sucres réduits et des groupes amino. La formation et l'accumulation d'AGE dans la peau entraînent une réticulation protéique, un raidissement de la peau et un jaunissement, qui finissent par contribuer au vieillissement cutané. Les acides aminés ont été décrits comme ayant des effets d'anti­glycation. L'objectif de cette étude était de comprendre le rôle inhibiteur du dérivé d'acide aminé N­acétyl­L­hydroxyproline (NAHP) en tant qu'actif anti­glycation pour la peau humaine. MÉTHODES: Un test acellulaire étudiant l'inhibition de la glycation de l'albumine sérique par la NAHP a été utilisé pour déterminer la capacité de la NAHP à diminuer la formation d'AGE. En évaluant la quantité de l'AGE N­(carboxyméthyl)lysine (CML), les capacités d'anti­glycation de la NAHP ont également été étudiées à l'aide d'une analyse par dot blot. L'amélioration de l'interaction cellule­matrice par la NAHP a été déterminée in vitro à l'aide d'un modèle de derme de lattices de collagène composées de fibroblastes glyqués. Dans des biopsies cutanées, l'autofluorescence des AGE a été déterminée après un traitement par NAHP et/ou glucose ex vivo. RÉSULTATS: La NAHP a inhibé de manière significative et dose­dépendante les taux d'AGE induits par la glycation d'une solution protéique. Cette diminution a pu être visualisée en montrant que l'aspect brunâtre ainsi que la fluorescence spécifique aux AGE des échantillons traités par glucose ont été réduits après l'application de quantités croissantes de NAHP. En outre, la formation de CML était inhibée de manière dose­dépendante par la NAHP. Dans des lattices de collagène composées de fibroblastes, la capacité contractile des fibroblastes était significativement perturbée après la glycation. Cela a pu être évité par l'ajout de NAHP. Par rapport aux échantillons traités au glyoxal, la co­application de NAHP a significativement réduit le diamètre ainsi que le poids des lattices de collagène composées de fibroblastes glyquées. L'application ex vivo de glucose sur les explants de peau a montré un signal de fluorescence des AGE plus élevé que les explants témoins. Le traitement concomitant par NAHP et glucose a réduit le niveau de fluorescence des AGE par rapport aux explants traités par glucose. CONCLUSION: Ces données fournissent des preuves évidentes que, dans des conditions de stress par glycation, le traitement par NAHP a inhibé la formation d'AGE in vitro et ex vivo, et a prévenu la perte des forces contractiles cellulaires dans un modèle de derme glyqué. Ainsi, la NAHP constitue manifestement une option de traitement bénéfique pour contrer les changements liés aux AGE dans la peau humaine, tels que le raidissement du derme et l'aspect jaunâtre de la peau.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Nitrosaminas , Humanos , Hidroxiprolina , Produtos Finais de Glicação Avançada/metabolismo , Envelhecimento , Glucose
7.
J Nutr ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38007183

RESUMO

BACKGROUND: Resistance exercise (RE) stimulates collagen synthesis in skeletal muscle and tendon but there is limited and equivocal evidence regarding an effect of collagen supplementation and exercise on collagen synthesis. Furthermore, it is not known if a dose-response exists regarding the effect of hydrolyzed collagen (HC) ingestion and RE on collagen synthesis. OBJECTIVE: To determine the HC dose-response effect on collagen synthesis after high-intensity RE in resistance-trained young men. METHODS: Using a double-blind, randomized crossover design, 10 resistance-trained males (age: 26 ± 3 y; height: 1.77 ± 0.04 m; mass: 79.7 ± 7.0 kg) ingested 0 g, 15 g, or 30 g HC with 50 mg vitamin C 1 h before performing 4 sets' barbell back squat RE at 10-repetition maximum load, after which they rested for 6 h. Blood samples were collected throughout each of the 3 interventions to analyze procollagen type Ⅰ N-terminal propeptide (PINP) and ß-isomerized C-terminal telopeptide of type I collagen (ß-CTX) concentration, and the concentration of 18 collagen amino acids. RESULTS: The serum PINP concentration × time area under the curve (AUC) was greater for 30 g (267 ± 79 µg·L-1·h) than for 15 g (235 ± 70 µg·L-1·h, P = 0.013) and 0 g HC (219 ± 88 µg·L-1·h, P = 0.002) but there was no difference between 0 and 15 g HC (P = 0.225). The AUCs of glycine and proline were greater for 30 g than for 15 and 0 g HC (P < 0.05). Plasma ß-CTX concentration decreased from -1 to +6 h (P < 0.05), with no differences between interventions. CONCLUSIONS: Ingesting 30 g HC before high-intensity RE augments whole-body collagen synthesis more than 15 g and 0 g HC in resistance-trained young males.

8.
Amino Acids ; 55(11): 1641-1654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882863

RESUMO

Small neuropeptides from the corpora cardiaca are responsible in cockroaches for the mobilisation of trehalose from the fat body into the haemolymph. Such hypertrehalosaemic hormones (HrTHs) belong to the large family of insect adipokinetic hormones (AKHs); a few HrTHs were previously sequenced from cockroaches, and from genomic and/or transcriptomic information one may predict the genes encoding HrTHs from more species. Definite elucidation of the primary structure of the mature peptide with putative modifications needs analytical chemical methods. In the current study, we use high-resolution mass spectrometry coupled with liquid chromatography to identify unequivocally the HrTHs of 13 cockroach species. Either genomic/transcriptomic information was available for most of the species examined, or from related species. We confirm predicted novel sequences and find hydroxyproline modification for the majority of the peptides. The novel decapeptides are structurally close to Bladi-HrTH, which is found in all seven of the investigated blaberid subfamilies. Bladi-HrTH and all the novel peptides elicit a hypertrehalosaemic response in Periplaneta americana, a blattid cockroach.


Assuntos
Baratas , Hormônios de Inseto , Animais , Sequência de Aminoácidos , Oligopeptídeos/química , Ácido Pirrolidonocarboxílico , Peptídeos/química , Espectrometria de Massas , Hormônios de Inseto/química
9.
Amino Acids ; 55(11): 1655-1664, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782378

RESUMO

Vitamin C plays a very important role in the repair of connective tissue, especially for sports whose training causes the most damage to this tissue. Therefore, many people believe that L-ascorbic acid (C6H8O6: vitamin C) reduces the recovery time between sports exercises. The most abundant form of structural protein in the body is collagen. Collagen is characterized by a high concentration of the three amino acids glycine (Gly), proline (Pro), and hydroxyproline (Hyp), which creates its characteristic triple helix structure. Therefore, in this study, the effect of vitamin C presence on the sequence, interaction, and orientation of amino acids for collagen formation is investigated using computational simulation. This study aimed to investigate the mechanism of action of vitamin C in terms of thermodynamics and structure of the reaction. The calculations are performed using density function theory (DFT) by the base set of B3LYP/6-311++G (p,d). The results show that the presence of vitamin C is effective in the formation of collagen protein for this interaction and the mechanism of amino acid sequence (Gly-Hyp-Pro) is better in the formation of collagen protein in the presence of vitamin C. The presence of Vit-C in the formation and direction of hydroxyproline (Hyp) causes its separation from the prolyl 5-hydroxylase enzyme. In the absence of vitamin C, the reaction stops at this stage and proline cannot be converted into hydroxyproline. The computational data shows vitamin C prevents unwanted interactions and directs amino acid reactions to repair connective tissue (collagen). Therefore, vitamin C acts as a cofactor in the Prolyl 5-Hydroxylase enzyme and causes it to convert proline to hydroxyl.


Assuntos
Aminoácidos , Prolina , Humanos , Hidroxiprolina/química , Estrutura Secundária de Proteína , Prolina/química , Colágeno/química , Glicina , Ácido Ascórbico , Oxigenases de Função Mista
10.
Microb Cell Fact ; 22(1): 240, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986164

RESUMO

BACKGROUND: trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS: First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION: This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.


Assuntos
Vias Biossintéticas , Escherichia coli , Hidroxiprolina , Escherichia coli/genética , Escherichia coli/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Ciclo do Ácido Cítrico , Engenharia Metabólica/métodos , Carbono/metabolismo
11.
J Sep Sci ; 46(24): e2300516, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884462

RESUMO

A new capillary zone electrophoresis method for collagen quantitation was developed and validated according to the International Council for Harmonization guideline Q2 (R1). The Sircol collagen assay and ultraviolet spectrometry were employed as reference methods. Capillary zone electrophoresis enables specific, simple, and fast determination within 9 min. It is less user-dependent and more automated than the Sircol collagen assay. With a limit of detection of 18.0 µg/mL, the new method is less sensitive than the Sircol collagen assay, which has a limit of detection of 6.5 µg/mL. Nonetheless, capillary zone electrophoresis covers a wider linearity range (50-400 µg/mL) compared to the Sircol collagen assay (5-80 µg/mL), with similar precision. Additional advantages of capillary zone electrophoresis are the ability to gain information on collagen integrity and to simultaneously determine native and denatured collagens. This approach represents a modern and legitimate alternative to the Sircol collagen assay. The developed method has been successfully applied to the study of three collagen products and samples from forced degradation.


Assuntos
Colágeno , Eletroforese Capilar , Eletroforese Capilar/métodos , Espectrofotometria Ultravioleta
12.
Biosci Biotechnol Biochem ; 87(8): 883-889, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37245058

RESUMO

In this randomized, double-blind, placebo-controlled study, we investigated the effects of collagen peptides (CP) containing high concentrations of prolyl-hydroxyproline and hydroxyprolyl-glycine on advanced glycation end products (AGEs) levels in the skin and subcutaneous blood vessel walls. A total of 31 individuals aged 47-87 years were randomly assigned to receive either 5 g/day of fish-derived CP or a placebo for 12 weeks. Body and blood compositions and AGEs levels were measured at the beginning and end of the study. No adverse events were observed, and both groups' blood and body compositions did not change significantly. However, the CP group had significantly lower AGEs levels and a slightly lower insulin resistance index (homeostasis model assessment ratio [HOMA-R]) than the placebo group. In addition, the percentage changes in AGEs and HOMA-R levels were positively and strongly correlated in both groups. These findings suggest that fish-derived CP may be effective in reducing AGEs levels and improving insulin resistance.


Assuntos
Resistência à Insulina , Colágeno , Método Duplo-Cego , Ingestão de Alimentos , Produtos Finais de Glicação Avançada , Peptídeos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Humanos , Produtos Pesqueiros
13.
Acta Radiol ; 64(4): 1589-1599, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36357954

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) injury is a common disease in clinical practice that seriously affects the daily life of patients. PURPOSE: To explore the molecular imaging basis of "diminution sign on dual-energy colour mapping" for the diagnosis of ACL injury by dual-energy computed tomography (DECT). MATERIAL AND METHODS: The hydroxylysine and hydroxyproline reagents were prepared in different concentrations. The grouping was shown as follows: a simple concentration change group of an amino acid (group 1/2); a mixed solution group with the concentration increasing synchronously (group 3); a mixed solution group with the concentration reverse increasing and decreasing (group 4); and a mixed solution group that fix one amino acid with increasing concentration of the other (group 5/6). The samples were scanned by DECT. The solution CT value and image signal-to-noise ratio were analyzed. RESULTS: In group 1/2, the brightness of the dual-energy color mapping of each test tube solution and the CT value increased with increasing the concentration of amino acid. In group 6, there was no significant change in the brightness and brilliance of the dual-energy color mapping and the CT value. The remaining three groups showed an increase in the brightness and brilliance of the dual-energy color mapping and the CT value, and this increase was positively associated with the hydroxylysine concentration. CONCLUSION: The dual-energy staining of the DECT imaging in "tendon" mode is related to hydroxylysine and hydroxyproline. Moreover, the degree of dual-energy color mapping is positively correlated with the change of CT value.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Hidroxilisina , Hidroxiprolina , Tomografia Computadorizada por Raios X/métodos , Articulação do Joelho , Aminoácidos , Imagem Molecular
14.
Adv Exp Med Biol ; 1413: 213-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195533

RESUMO

The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.


Assuntos
Proteínas da Matriz Extracelular , Pneumopatias , Humanos , Colágeno , Matriz Extracelular , Pulmão
15.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108094

RESUMO

A number of food components, such as polyphenols and phytonutrients, have immunomodulatory effects. Collagen has various bioactivities, such as antioxidative effects, the promotion of wound healing, and relieving symptoms of bone/joint disease. Collagen is digested into dipeptides and amino acids in the gastrointestinal tract and subsequently absorbed. However, the difference in immunomodulatory effects between collagen-derived dipeptides and amino acids is unknown. To investigate such differences, we incubated M1 macrophages or peripheral blood mononuclear cells (PBMC) with collagen-derived dipeptides (hydroxyproline-glycine (Hyp-Gly) and proline-hydroxyproline (Pro-Hyp)) and amino acids (proline (Pro), hydroxyproline (Hyp), and glycine (Gly)). We first investigated the dose dependency of Hyp-Gly on cytokine secretion. Hyp-Gly modulates cytokine secretion from M1 macrophages at 100 µM, but not at 10 µM and 1 µM. We then compared immunomodulatory effects between dipeptides and mixtures of amino acids on M1 macrophages and PBMC. There was, however, no difference in cytokine secretion between dipeptides and their respective amino acids. We conclude that collagen-derived dipeptides and amino acids have immunomodulatory effects on M1-differentiated RAW264.7 cells and PBMC and that there is no difference in the immunomodulatory effects between dipeptides and amino acids.


Assuntos
Aminoácidos , Dipeptídeos , Dipeptídeos/farmacologia , Dipeptídeos/química , Hidroxiprolina/metabolismo , Aminoácidos/farmacologia , Leucócitos Mononucleares/metabolismo , Colágeno/metabolismo , Prolina/farmacologia , Prolina/química , Glicina , Citocinas
16.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375217

RESUMO

Chondrocytes are surrounded by a lower oxygen environment than other well-vascularized tissues with higher oxygenation levels. Prolyl-hydroxyproline (Pro-Hyp), one of the final collagen-derived peptides, has been previously reported to be involved in the early stages of chondrocyte differentiation. However, whether Pro-Hyp can alter chondrocyte differentiation under physiological hypoxic conditions is still unclear. This study aimed to investigate whether Pro-Hyp affects the differentiation of ATDC5 chondrogenic cells under hypoxic conditions. The addition of Pro-Hyp resulted in an approximately 18-fold increase in the glycosaminoglycan staining area compared to the control group under hypoxic conditions. Moreover, Pro-Hyp treatment significantly upregulated the expression of SOX9, Col2a1, Aggrecan, and MMP13 in chondrocytes cultured under hypoxic conditions. These results demonstrate that Pro-Hyp strongly promotes the early differentiation of chondrocytes under physiological hypoxic conditions. Therefore, Pro-Hyp, a bioactive peptide produced during collagen metabolism, may function as a remodeling factor or extracellular matrix remodeling signal that regulates chondrocyte differentiation in hypoxic cartilage.


Assuntos
Condrócitos , Colágeno , Condrócitos/metabolismo , Colágeno/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Diferenciação Celular/fisiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Células Cultivadas
17.
J Bacteriol ; 204(8): e0022922, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862761

RESUMO

Clostridioides difficile is a nosocomial pathogen that colonizes the gut and causes diarrhea, colitis, and severe inflammation. Recently, C. difficile has been shown to use toxin-mediated inflammation to promote host collagen degradation, which releases several amino acids into the environment. Amino acids act as electron donors and acceptors in Stickland metabolism, an anaerobic process involving redox reactions between pairs of amino acids. Proline, glycine, and hydroxyproline are the three main constituents of collagen and are assumed to act as electron acceptors, but their exact effects on the growth and physiology of C. difficile are still unclear. Using three standard culture media (supplemented brain heart infusion [BHIS], tryptone-yeast [TY], and C. difficile minimal medium [CDMM]) supplemented with proline, glycine, or hydroxyproline, we grew C. difficile strains R20291, JIR8094, and a panel of mutants unable to express the Stickland selenoenzymes d-proline reductase and glycine reductase. In the wild-type strains, growth yields in rich media (BHIS and TY) were higher with proline and hydroxyproline but not glycine; moreover, proline-stimulated growth yields required the activity of d-proline reductase, whereas hydroxyproline-stimulated growth yields were independent of its activity. While assumed to be a proline auxotroph, C. difficile could surprisingly grow in a defined medium (CDMM) without proline but only if d-proline reductase was absent. We believe the mere presence of this enzyme ultimately determines the organism's strict dependence on proline and likely defines the bioenergetic priorities for thriving in the host. Finally, we demonstrated that addition of proline and hydroxyproline to the culture medium could reduce toxin production but not in cells lacking selenoproteins. IMPORTANCE Stickland metabolism is a core facet of C. difficile physiology that likely plays a major role in host colonization. Here, we carefully delineate the effects of each amino acid on the growth of C. difficile with respect to the selenoenzymes d-proline reductase and glycine reductase. Moreover, we report that d-proline reductase forces C. difficile to strictly depend on proline for growth. Finally, we provide evidence that proline and hydroxyproline suppress toxin production and that selenoproteins are involved in this mechanism. Our findings highlight the significance of selenium-dependent Stickland reactions and may provide insight on what occurs during host infection, especially as it relates to the decision to colonize based on proline as a nutrient.


Assuntos
Clostridioides difficile , Aminoácido Oxirredutases , Aminoácidos/metabolismo , Clostridioides , Glicina/metabolismo , Humanos , Hidroxiprolina , Inflamação , Prolina/metabolismo , Selenoproteínas
18.
J Biol Chem ; 297(1): 100819, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029590

RESUMO

Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on cells. These bioactive collagen peptides are locally generated by the degradation of endogenous collagen in response to injury. However, no comprehensive study has yet explored the functional links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell proliferation, with significantly upregulated extracellular signal-regulated kinase phosphorylation and extracellular matrix production and increased type I collagen network organization. Using proteomics, we have predicted molecular transport, cellular assembly and organization, and cellular movement as potential linked-network pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp demonstrate increased directional persistence and significantly increased directed motility and migration velocity. They are accompanied by elongated lamellipodial protrusions with increased levels of active ß1-integrin-containing focal contacts, as well as reorganization of thicker peripheral F-actin fibrils. Pro-Hyp-mediated chemotactic activity is significantly reduced (p < 0.001) in cells treated with the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or the α5ß1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in translational medicine.


Assuntos
Movimento Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Homeostase/efeitos dos fármacos , Integrina beta1/metabolismo , Pseudópodes/metabolismo , Tendões/citologia , Envelhecimento , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Pseudópodes/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tenócitos/citologia , Tenócitos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Amino Acids ; 54(6): 955-966, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35414005

RESUMO

The ability of amino acid "customizable units" to generate structural diversity is illustrated by the conversion of 4-hydroxyproline (Hyp) units into a variety of nitrogen heterocycles. After a first common step, where the unit underwent a one-pot decarboxylation-alkylation reaction to afford 2-alkylpyrrolidines with high stereoselectivity, a divergent step was carried out. Thus, the deprotected 4-hydroxy group was used either to initiate a radical scission that afforded aliphatic ß-amino aldehydes, or to carry out an elimination reaction, to give 2-alkyl-2,5-dihydro-1H-pyrroles. In the first case, the amines underwent a tandem reductive amination-cyclization to afford ß-amino-δ-lactams, an efficient rigidifying unit in peptides. Different lactam N-substituents, such as alkylamines, peptides, and alkenyl chains suitable for olefin metathesis were introduced this way. In the second case, the pyrrole derivatives were efficiently converted into alkaloid and iminosugar derivatives in good global yields and with excellent stereoselectivity.


Assuntos
Aminoácidos , Nitrogênio , Aminação , Hidroxiprolina , Peptídeos/química
20.
Chirality ; 34(3): 462-472, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060196

RESUMO

Chiral covalent organic framework materials have many excellent properties, which have received much attention in the field of separation. Synthesized the covalent organic framework COF-TpBD (NH2 )2 modified, respectively, by L-valine trifluoroacetyl derivative, L-hydroxyproline, and (1S)-(+)-10-camphorsulfonyl chloride, three capillary columns of chiral covalent organic framework materials were obtained for gas chromatography. Those columns are able to separate some chiral compounds, positional isomers, n-alkanes, n-alcohols, aromatic hydrocarbon mixture, and Grob's reagents. They are complementary to other chiral capillary columns and are possible for potential applications.


Assuntos
Estruturas Metalorgânicas , Álcoois , Cromatografia Gasosa/métodos , Isomerismo , Estruturas Metalorgânicas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa