RESUMO
Tau is a microtubule-associated protein implicated in Alzheimer's disease (AD) and other neurodegenerative disorders termed tauopathies. Pathological, aggregated forms of tau form neurofibrillary tangles (NFTs), impairing its ability to stabilize microtubules and promoting neurotoxicity. Indeed, NFTs correlate with neuronal loss and cognitive impairment. Hyperphosphorylation of tau is seen in all tauopathies and mirrors disease progression, suggesting an essential role in pathogenesis. However, hyperphosphorylation remains a generic and ill-defined term, obscuring the functional importance of specific sites in different physiological or pathological settings. Here, we focused on global mapping of tau phosphorylation specifically during conditions of neuronal hyperexcitation. Hyperexcitation is a property of AD and other tauopathies linked to human cognitive deficits and increased risk of developing seizures and epilepsy. Moreover, hyperexcitation promotes extracellular secretion and trans-synaptic propagation of tau. Using unbiased mass spectrometry, we identified a novel phosphorylation signature in the C-terminal domain of tau detectable only during neuronal hyperactivity in primary cultured rat hippocampal neurons. These sites influenced tau localization to dendrites as well as the size of excitatory postsynaptic sites. These results demonstrate novel physiological tau functions at synapses and the utility of comprehensive analysis of tau phosphorylation during specific signaling contexts.
RESUMO
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.
Assuntos
Encéfalo , Ratos Transgênicos , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Ratos , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Príons/metabolismo , Príons/genética , Tauopatias/patologia , Tauopatias/metabolismo , Tauopatias/genética , Degeneração Neural/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , MutaçãoRESUMO
There is growing evidence showing that adiponectin (APN) can improve Alzheimer's disease(AD)-like pathological changes by improving insulin resistance. However, the role of AdipoRon (an Adiponectin receptor agonist) on synaptic plasticity and cognitive dysfunction in the early stages of type 2 diabetes mellitus(T2DM) remains unknown. In this study, we investigated the neuroprotective effect and the molecular mechanism underlying the effect of AdipoRon in T2DM mice. We found that AdipoRon significantly restored the cognitive deficits in T2DM mice, including shorter escape latency, more crossing times, increased distances, and percentage of time in the target quadrant. In addition, AdipoRon treatment up-regulated synaptic proteins (PSD95, SYN, GAP43, and SYP), increased the number of hippocampal synapses and attenuated synaptic damage, including the length, the number and the density of dendritic spines in CA1 and DG regions. Furthermore, AdipoRon attenuated Tau phosphorylation at multiple AD-related sites (p-tau 205, p-tau 396, p-tau 404) by promoting AdipoR expression and activating the AMPK/mTOR pathway. Our data suggests that AdipoRon exerts neuroprotective effects on the T2DM mice, which may be mediated by the activation of the AdipoR/AMPK/mTOR signaling pathway.
Assuntos
Proteínas Quinases Ativadas por AMP , Receptores de Adiponectina , Sinapses , Serina-Treonina Quinases TOR , Proteínas tau , Animais , Receptores de Adiponectina/metabolismo , Proteínas tau/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismoRESUMO
Recently, glycogen synthase kinase-3ß (GSK-3ß) has been considered as a critical factor implicated in Alzheimer's disease (AD). In a previous work, a 3D pharmacophore model for GSK-3ß inhibitors was created and the results suggested that derivative ZINC67773573, VIII, may provide a promising lead for developing novel GSK-3ß inhibitors for the AD's treatment. Consequently, in this work, novel series of quinolin-2-one derivatives were synthesized and assessed for their GSK-3ß inhibitory properties. In vitro screening identified three compounds: 7c, 7e and 7f as promising GSK-3ß inhibitors. Compounds 7c, 7e and 7f were found to exhibit superior inhibitory effect on GSK-3ß with IC50 value ranges between 4.68 ± 0.59 to 8.27 ± 0.60 nM compared to that of staurosporine (IC50 = 6.12 ± 0.74 nM). Considerably, compounds 7c, 7e and 7f effectively lowered tau hyperphosphorylated aggregates and proving their safety towards the SH-SY5Y and THLE2 normal cell lines. The most promising compound 7c alleviated cognitive impairments in the scopolamine-induced model in mice. Compound 7c's activity profile, while not highly selective, may provide a starting point and valuable insights into the design of multi-target inhibitors. According to the ADME prediction results, compounds 7c, 7e and 7f followed Lipinski's rule of five and could almost permeate through the BBB. Molecular docking simulations showed that these compounds are well accommodated in the ATP binding site interacting by its quinoline-2-one ring through hydrogen bonding with the key amino acids Asp133 and Val135 at the hinge region. The findings of this study suggested that these new compounds may have potential as anti-AD drugs targeting GSK-3ß.
Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Glicogênio Sintase Quinase 3 beta/metabolismo , Farmacóforo , Fosforilação , Proteínas tau/metabolismoRESUMO
A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid ß accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.
Assuntos
Disfunção Cognitiva , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1 , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Cloreto de Sódio na Dieta , Serina-Treonina Quinases TOR , Animais , Masculino , Serina-Treonina Quinases TOR/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta/efeitos adversos , Receptor IGF Tipo 1/metabolismo , Proteínas tau/metabolismo , Autofagia/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacosRESUMO
DNA end resection is a critical step in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR). However, the mechanisms governing the extent of resection at DSB sites undergoing homology-directed repair remain unclear. Here, we show that, upon DSB induction, the key resection factor CtIP is modified by the ubiquitin-like protein SUMO at lysine 578 in a PIAS4-dependent manner. CtIP SUMOylation occurs on damaged chromatin and requires prior hyperphosphorylation by the ATM protein kinase. SUMO-modified hyperphosphorylated CtIP is targeted by the SUMO-dependent E3 ubiquitin ligase RNF4 for polyubiquitination and subsequent degradation. Consequently, disruption of CtIP SUMOylation results in aberrant accumulation of CtIP at DSBs, which, in turn, causes uncontrolled excessive resection, defective HR, and increased cellular sensitivity to DSB-inducing agents. These findings reveal a previously unidentified regulatory mechanism that regulates CtIP activity at DSBs and thus the extent of end resection via ATM-dependent sequential posttranslational modification of CtIP.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA por Junção de Extremidades , Processamento de Proteína Pós-Traducional , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Humanos , Proteínas Nucleares/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
In the pathological process of Alzheimer's disease, neuronal cell death is closely related to the accumulation of reactive oxygen species. Our previous studies have found that oxidative stress can activate microtubule affinity-regulating kinases, resulting in elevated phosphorylation levels of tau protein specifically at the Ser262 residue in N1E-115 cells that have been subjected to exposure to hydrogen peroxide. This process may be one of the pathogenic mechanisms of Alzheimer's disease. Vitamin E is a fat-soluble, naturally occurring antioxidant that plays a crucial role in biological systems. This study aimed to examine the probable processes that contribute to the inhibiting effect on the abnormal phosphorylation of tau protein and the neuroprotective activity of a particular type of vitamin E, α-tocotrienol. The experimental analysis revealed that α-tocotrienol showed significant neuroprotective effects in the N1E-115 cell line. Our data further suggest that one of the mechanisms underlying the neuroprotective effects of α-tocotrienol may be through the inhibition of microtubule affinity-regulated kinase activation, which significantly reduces the oxidative stress-induced aberrant elevation of p-Tau (Ser262) levels. These results indicate that α-tocotrienol may represent an intriguing strategy for treating or preventing Alzheimer's disease.
Assuntos
Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Vitamina E , Proteínas tau , Proteínas tau/metabolismo , Fosforilação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Vitamina E/farmacologia , Vitamina E/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , TocotrienóisRESUMO
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer's disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer's disease. Brain ischemia and Alzheimer's disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment. Following brain ischemia in animals and humans, the presence of amyloid plaques in the extracellular space and intracellular neurofibrillary tangles was revealed. The phenomenon of tau protein hyperphosphorylation is a similar pathological feature of both post-ischemic brain injury and Alzheimer's disease. In Alzheimer's disease, the phosphorylated Thr231 motif in tau protein has two distinct trans and cis conformations and is the primary site of tau protein phosphorylation in the pre-entanglement cascade and acts as an early precursor of tau protein neuropathology in the form of neurofibrillary tangles. Based on the latest publication, we present a similar mechanism of the formation of neurofibrillary tangles after brain ischemia as in Alzheimer's disease, established on trans- and cis-phosphorylation of tau protein, which ultimately influences the development of tauopathy.
Assuntos
Doença de Alzheimer , Isquemia Encefálica , Animais , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/metabolismo , Encéfalo/metabolismo , Fosforilação , Isquemia Encefálica/metabolismoRESUMO
Neuroinflammation, a core pathological feature observed in several neurodegenerative diseases, including Alzheimer's disease (AD), is rapidly gaining attention as a target in understanding the molecular underpinnings of these disorders. Glial cells, endothelial cells, peripheral immune cells, and astrocytes produce a variety of pro-inflammatory mediators that exacerbate the disease progression. Additionally, microglial cells play a complex role in AD, facilitating the clearance of pathological amyloid-beta peptide (Aß) plaques and aggregates of the tau protein. Tau proteins, traditionally associated with microtubule stabilization, have come under intense scrutiny for their perturbed roles in neurodegenerative conditions. In this narrative review, we focus on recent advances from molecular insights that have revealed aberrant tau post-translational modifications, such as phosphorylation and acetylation, serving as pathological hallmarks. These modifications also trigger the activation of CNS-resident immune cells, such as microglia and astrocytes substantially contributing to neuroinflammation. This intricate relationship between tau pathologies and neuroinflammation fosters a cascading impact on neural pathophysiology. Furthermore, understanding the molecular mechanisms underpinning tau's influence on neuroinflammation presents a frontier for the development of innovative immunotherapies. Neurodegenerative diseases have been relatively intractable to conventional pharmacology using small molecules. We further comprehensively document the many alternative approaches using immunotherapy targeting tau pathological epitopes and structures with a wide array of antibodies. Clinical trials are discussed using these therapeutic approaches, which have both promising and disappointing outcomes. Future directions for tau immunotherapies may include combining treatments with Aß immunotherapy, which may result in more significant clinical outcomes for neurodegenerative diseases.
RESUMO
Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aß1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aß1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.
RESUMO
BACKGROUND: Type 2 diabetes (T2D) is an independent risk factor for Alzheimer's disease (AD). Exendin-4 (Ex-4), a widely used glucagon-like peptide-1 receptor agonist drug in the treatment of T2D, has been demonstrated the therapeutic effects on diabetic encephalopathy (DE). Especially, the Ex-4 ameliorates the tau hyperphosphorylation and cognitive impairment in DE. And these crucial alterations are also important bridge between T2D and AD. However, its unique mechanism is unclear. METHODS: The db/db mice, high-fat-diet (HFD) / streptozotocin (STZ)-induced diabetic (HF-diabetic) mice, and high-glucose-damaged (HGD) HT-22 hippocampal cells were enrolled to examine the effects of Ex-4 on AD-like changes in T2D. The Novel object recognition test (NORT) and Morris water maze test (MWMT) were conducted to evaluate the cognitive impairment. The Dickkopf-1 (DKK1) was employed to weaken the activation of the Wnt/ß-catenin pathway to explore the mechanism of Ex-4 in protecting the brain functions. The JASPAR was based to predict the interaction between NeuroD1 and the promoter region of Ins2. Moreover, the chromatin immunoprecipitation coupled with quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter assays were performed. RESULTS: Ex-4 alleviated the tau hyperphosphorylation, increased the brain-derived insulin, and improved the PI3K/AKT/GSK3-ß signalling in db/db mice, HF-diabetic mice, and HGD HT-22 hippocampal neuronal cells. The NORT and MWMT indicated that Ex-4 alleviated the learning and memory deficits in HF-diabetic mice. The inhibitor Dickkopf-1 (DKK1) of the Wnt/ß-catenin pathway significantly blocked the protective effects of Ex-4. Regarding further molecular mechanisms, NeuroD1 was affected by Ex-4 in vivo and in vitro, and the knockdown or overexpression of NeuroD1 suggested its crucial role in promoting the brain insulin by Ex-4. Meanwhile, the ChIPâqPCR and luciferase reporter assays confirmed the combination between NeuroD1 and the promoter region of the insulin-encoding gene Ins2. And this interaction could be promoted by Ex-4. CONCLUSIONS: Our study proposes that Ex-4 alleviates tau hyperphosphorylation and cognitive dysfunction by increasing Ins2-derived brain insulin through the Wnt/ß-catenin/NeuroD1 signaling in T2D. And its also show new lights on part of the progress and mechanism on treatment targets for the DE in T2D.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida/farmacologia , beta Catenina , Diabetes Mellitus Experimental/tratamento farmacológico , Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Insulina , Doença de Alzheimer/tratamento farmacológicoRESUMO
Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments. One underexplored area is the clinical correlation between infection with herpesviruses and increased risk of AD. We hypothesized that similar to work performed with herpes simplex virus 1 (HSV1), infection with the cytomegalovirus (CMV) herpesvirus increases levels and phosphorylation of tau, similar to AD tauopathy. We used murine CMV (MCMV) to infect mouse fibroblasts and rat neuronal cells to test our hypothesis. MCMV infection increased steady-state levels of primarily high molecular weight forms of tau and altered the patterns of tau phosphorylation. Both changes required viral late gene products. Glycogen synthase kinase 3 beta (GSK3ß) was upregulated in the HSVI model, but inhibition with lithium chloride suggested that this enzyme is unlikely to be involved in MCMV infection mediated tau phosphorylation. Thus, we confirm that MCMV, a beta herpes virus, like alpha herpes viruses (e.g., HSV1), can promote tau pathology. This suggests that CMV infection can be useful as another model system to study mechanisms leading to neurodegeneration. Since MCMV infects both mice and rats as permissive hosts, our findings from tissue culture can likely be applied to a variety of AD models to study development of abnormal tau pathology.
Assuntos
Doença de Alzheimer , Infecções por Citomegalovirus , Herpesvirus Humano 1 , Ratos , Camundongos , Animais , Doença de Alzheimer/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Neurônios/patologia , Fosforilação , Herpesvirus Humano 1/metabolismo , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/farmacologiaRESUMO
Scutellarein hybrids were designed, synthesized and evaluated as multifunctional therapeutic agents for the treatment of Alzheimer's disease (AD). Compounds 11a-i, containing a 2-hydroxymethyl-3,5,6-trimethylpyrazine fragment at the 7-position of scutellarein, were found to have balanced and effective multi-target potencies against AD. Among them, compound 11e exhibited the most potent inhibition of electric eel and human acetylcholinesterase enzymes with IC50 values of 6.72 ± 0.09 and 8.91 ± 0.08 µM, respectively. In addition, compound 11e displayed not only excellent inhibition of self- and Cu2+-induced Aß1-42 aggregation (91.85% and 85.62%, respectively) but also induced disassembly of self- and Cu2+-induced Aß fibrils (84.54% and 83.49% disaggregation, respectively). Moreover, 11e significantly reduced tau protein hyperphosphorylation induced by Aß25-35, and also exhibited good inhibition of platelet aggregation. A neuroprotective assay demonstrated that pre-treatment of PC12 cells with 11e significantly decreased lactate dehydrogenase levels, increased cell viability, enhanced expression of relevant apoptotic proteins (Bcl-2, Bax and caspase-3) and inhibited RSL3-induced PC12 cell ferroptosis. Furthermore, hCMEC/D3 and hPepT1-MDCK cell line permeability assays indicated that 11e would have optimal blood-brain barrier and intestinal absorption characteristics. In addition, in vivo studies revealed that compound 11e significantly attenuated learning and memory impairment in an AD mice model. Toxicity experiments with the compound did not reveal any safety concerns. Notably, 11e significantly reduced ß-amyloid precursor protein (APP) and ß-site APP cleaving enzyme-1 (BACE-1) protein expression in brain tissue of scopolamine-treated mice. Taken together, these outstanding properties qualified compound 11e as a promising multi-target candidate for AD therapy, worthy of further studies.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Inibidores da Colinesterase , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Glycogen synthase kinase 3ß (GSK-3ß) is a potential target for anti-Alzheimer's disease (AD) drug development. In this study, a series of novel thieno[3,2-c]pyrazol-3-amine derivatives was synthesized and evaluated as potential GSK-3ß inhibitors by structure-based drug design. The thieno[3,2-c]pyrazol-3-amine derivative 54 with a 4-methylpyrazole moiety which interacted with Arg141 by π-cation interaction was identified as a potent GSK-3ß inhibitor with an IC50 of 3.4 nM and an acceptable kinase selectivity profile. In the rat primary cortical neurons, compound 54 showed neuroprotective effects on Aß-induced neurotoxicity. Western blot analysis indicated that 54 inhibited GSK-3ß by up-regulating the expression of phosphorylated GSK-3ß at Ser9 and down-regulating the expression of phosphorylated GSK-3ß at Tyr216. Meanwhile, 54 decreased tau phosphorylation at Ser396 in a dose-dependent way. In astrocytes and microglia cells, 54 inhibited the expression of inducible nitric oxide synthase (iNOS), indicating that 54 showed an anti-neuroinflammatory effect. In the AlCl3-induced zebrafish AD model, 54 significantly ameliorated the AlCl3-induced dyskinesia, demonstrating its anti-AD activity in vivo.
Assuntos
Doença de Alzheimer , Proteínas tau , Ratos , Animais , Proteínas tau/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Peixe-Zebra/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , FosforilaçãoRESUMO
Huntington's disease is classically described as a neurodegenerative disorder of monogenic aetiology. The disease is characterized by an abnormal polyglutamine expansion in the huntingtin gene, which drives the toxicity of the mutated form of the protein. However, accumulation of the microtubule-associated protein tau, which is involved in a number of neurological disorders, has also been observed in patients with Huntington's disease. In order to unravel the contribution of tau hyperphosphorylation to hallmark features of Huntington's disease, we administered weekly intraperitoneal injections of the anti-tau pS202 CP13 monoclonal antibody to zQ175 mice and characterized the resulting behavioral and biochemical changes. After 12 weeks of treatment, motor impairments, cognitive performance and general health were improved in zQ175 mice along with a significant reduction in hippocampal pS202 tau levels. Despite the lack of effect of CP13 on neuronal markers associated with Huntington's disease pathology, tau-targeting enzymes and gliosis, CP13 was shown to directly impact mutant huntingtin aggregation such that brain levels of amyloid fibrils and huntingtin oligomers were decreased, while larger huntingtin protein aggregates were increased. Investigation of CP13 treatment of Huntington's disease patient-derived induced pluripotent stem cells (iPSCs) revealed a reduction in pS202 levels in differentiated cortical neurons and a rescue of neurite length. Collectively, these findings suggest that attenuating tau pathology could mitigate behavioral and molecular hallmarks associated with Huntington's disease.
Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Imunização Passiva , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismoRESUMO
One of the most complex and challenging developments at the beginning of the third millennium is the alarming increase in demographic aging, mainly-but not exclusively-affecting developed countries. This reality results in one of the harsh medical, social, and economic consequences: the continuously increasing number of people with dementia, including Alzheimer's disease (AD), which accounts for up to 80% of all such types of pathology. Its large and progressive disabling potential, which eventually leads to death, therefore represents an important public health matter, especially because there is no known cure for this disease. Consequently, periodic reappraisals of different therapeutic possibilities are necessary. For this purpose, we conducted this systematic literature review investigating nonpharmacological interventions for AD, including their currently known cellular and molecular action bases. This endeavor was based on the PRISMA method, by which we selected 116 eligible articles published during the last year. Because of the unfortunate lack of effective treatments for AD, it is necessary to enhance efforts toward identifying and improving various therapeutic and rehabilitative approaches, as well as related prophylactic measures.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas tauRESUMO
Prostaglandin F2α (PGF2α), the first-line anti-glaucoma medication, can cause the deepening of the upper eyelid sulcus due to orbital lipoatrophy. However, the pathogenesis of Graves' ophthalmopathy (GO) involves the excessive adipogenesis of the orbital tissues. The present study aimed to determine the therapeutic effects and underlying mechanisms of PGF2α on adipocyte differentiation. In this study primary cultures of orbital fibroblasts (OFs) from six patients with GO were established. Immunohistochemistry, immunofluorescence, and Western blotting (WB) were used to evaluated the expression of the F-prostanoid receptor (FPR) in the orbital adipose tissues and the OFs of GO patients. The OFs were induced to differentiate into adipocytes and treated with different incubation times and concentrations of PGF2α. The results of Oil red O staining showed that the number and size of the lipid droplets decreased with increasing concentrations of PGF2α and the reverse transcription-polymerase chain reaction (RT-PCR) and WB of the peroxisome proliferator-activated receptor γ (PPARγ) and fatty-acid-binding protein 4 (FABP4), both adipogenic markers, were significantly downregulated via PGF2α treatment. Additionally, we found the adipogenesis induction of OFs promoted ERK phosphorylation, whereas PGF2α further induced ERK phosphorylation. We used Ebopiprant (FPR antagonist) to interfere with PGF2α binding to the FPR and U0126, an Extracellular Signal-Regulated Kinase (ERK) inhibitor, to inhibit ERK phosphorylation. The results of Oil red O staining and expression of adipogenic markers showed that blocking the receptor binding or decreasing the phosphorylation state of the ERK both alleviate the inhibitory effect of PGF2a on the OFs adipogenesis. Overall, PGF2α mediated the inhibitory effect of the OFs adipogenesis through the hyperactivation of ERK phosphorylation via coupling with the FPR. Our study provides a further theoretical reference for the potential application of PGF2α in patients with GO.
Assuntos
Dinoprosta , Oftalmopatia de Graves , Humanos , Dinoprosta/metabolismo , Adipogenia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Oftalmopatia de Graves/patologia , Fibroblastos/metabolismo , Células CultivadasRESUMO
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aß) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Assuntos
Doença de Alzheimer , Sulfeto de Hidrogênio , Humanos , Doença de Alzheimer/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estresse OxidativoRESUMO
Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Doenças dos Animais , Gastrodia , MicroRNAs , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Gastrodia/genética , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Proteínas tau/metabolismoRESUMO
BACKGROUND: Exposure to anesthesia in the elderly might increase the risk of dementia. Although the mechanism underlying the association is uncertain, anesthesia has been shown to induce acute tau hyperphosphorylation in preclinical models. We sought to investigate the impact of anesthesia on gene expression and on acute and long-term changes in tau biochemistry in transgenic models of tauopathy in order to better understand how anesthesia influences the pathophysiology of dementia. METHODS: We exposed mice with over-expressed human mutant tau (P301L and hyperdopaminergic COMTKO/P301L) to two hours of isoflurane and compared anesthetized mice to controls at several time points. We evaluated tau hyperphosphorylation with quantitative high-sensitivity enzyme-linked immunosorbent assay and performed differential expression and functional transcriptome analyses following bulk mRNA-sequencing. RESULTS: Anesthesia induced acute hyperphosphorylation of tau at epitopes related to Alzheimer's disease (AD) in both P301L-based models. Anesthesia was associated with differential expression of genes in the neurodegenerative pathways (e.g., AD-risk genes ApoE and Trem2) and thermogenesis pathway, which is related to both mammalian hibernation and tau phosphorylation. One and three months after anesthesia, hyperphosphorylated tau aggregates were increased in the anesthetized mice. CONCLUSIONS: Anesthesia may influence the expression of AD-risk genes and induce biochemical changes in tau that promote aggregation even after single exposure. Further preclinical and human studies are necessary to establish the relevance of our transcriptomic and biochemical findings in these preclinical models to the pathogenesis of dementia following anesthesia. TRIAL REGISTRATION: Not applicable.