Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 187(15): 4010-4029.e16, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917790

RESUMO

Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.


Assuntos
Blastocisto , Diferenciação Celular , Endoderma , Animais , Endoderma/metabolismo , Endoderma/citologia , Camundongos , Blastocisto/metabolismo , Blastocisto/citologia , Linhagem da Célula , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Transdução de Sinais , Desenvolvimento Embrionário , Janus Quinases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/metabolismo , Feminino , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia
2.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38744282

RESUMO

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Assuntos
Blastômeros , Linhagem da Célula , Embrião de Mamíferos , Feminino , Humanos , Blastômeros/citologia , Blastômeros/metabolismo , Divisão Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Masculino , Animais , Camundongos
3.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906095

RESUMO

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Assuntos
Quimera , Organogênese , Animais , Humanos , Quimera/embriologia , Implantação do Embrião , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Modelos Biológicos , Organoides , Medicina Regenerativa , Engenharia Tecidual/métodos
4.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102672

RESUMO

Successful human pregnancy depends upon rapid establishment of three founder lineages: the trophectoderm, epiblast and hypoblast, which together form the blastocyst. Each plays an essential role in preparing the embryo for implantation and subsequent development. Several models have been proposed to define the lineage segregation. One suggests that all lineages specify simultaneously; another favours the differentiation of the trophectoderm before separation of the epiblast and hypoblast, either via differentiation of the hypoblast from the established epiblast, or production of both tissues from the inner cell mass precursor. To begin to resolve this discrepancy and thereby understand the sequential process for production of viable human embryos, we investigated the expression order of genes associated with emergence of hypoblast. Based upon published data and immunofluorescence analysis for candidate genes, we present a basic blueprint for human hypoblast differentiation, lending support to the proposed model of sequential segregation of the founder lineages of the human blastocyst. The first characterised marker, specific initially to the early inner cell mass, and subsequently identifying presumptive hypoblast, is PDGFRA, followed by SOX17, FOXA2 and GATA4 in sequence as the hypoblast becomes committed.


Assuntos
Blastocisto , Camadas Germinativas , Gravidez , Feminino , Humanos , Ativação Transcricional , Blastocisto/metabolismo , Camadas Germinativas/metabolismo , Embrião de Mamíferos/metabolismo , Diferenciação Celular , Desenvolvimento Embrionário
5.
Dev Biol ; 509: 43-50, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325560

RESUMO

Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Humanos , Gravidez , Adulto , Feminino , Animais , Camundongos , Blastocisto , Células-Tronco
6.
Genomics ; 116(2): 110780, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211822

RESUMO

The embryonic development of the pig comprises a long in utero pre- and peri-implantation development, which dramatically differs from mice and humans. During this peri-implantation period, a complex series of paracrine signals establishes an intimate dialogue between the embryo and the uterus. To better understand the biology of the pig blastocyst during this period, we generated a large dataset of single-cell RNAseq from early and hatched blastocysts, spheroid and ovoid conceptus and proteomic datasets from corresponding uterine fluids. Our results confirm the molecular specificity and functionality of the three main cell populations. We also discovered two previously unknown subpopulations of the trophectoderm, one characterised by the expression of LRP2, which could represent progenitor cells, and the other, expressing pro-apoptotic markers, which could correspond to the Rauber's layer. Our work provides new insights into the biology of these populations, their reciprocal functional interactions, and the molecular dialogue with the maternal uterine environment.


Assuntos
Blastocisto , Proteômica , Gravidez , Humanos , Feminino , Suínos , Camundongos , Animais , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica
7.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511125

RESUMO

In vitro modeling of human peri-gastrulation development is a valuable tool for understanding embryogenetic mechanisms. The extraembryonic mesoderm (ExM) is crucial in supporting embryonic development by forming tissues such as the yolk sac, allantois, and chorionic villi. However, the origin of human ExM remains only partially understood. While evidence suggests a primitive endoderm (PrE) origin based on morphological findings, current in vitro models use epiblast-like cells. To address this gap, we developed a protocol to generate ExM-like cells from PrE-like cell line called naïve extraembryonic endoderm (nEnd). We identified the ExM-like cells by specific markers (LUM and ANXA1). Moreover, these in vitro-produced ExM cells displayed angiogenic potential on a soft matrix, mirroring their physiological role in vasculogenesis. By integrating single-cell RNA sequencing (scRNAseq) data, we found that the ExM-like cells clustered with the LUM/ANXA1-rich cell populations of the gastrulating embryo, indicating similarity between in vitro and ex utero cell populations. This study confirms the derivation of ExM from PrE and establishes a cell culture system that can be utilized to investigate ExM during human peri-gastrulation development, both in monolayer cultures and more complex models.


Assuntos
Endoderma , Mesoderma , Gravidez , Feminino , Humanos , Endoderma/metabolismo , Mesoderma/metabolismo , Diferenciação Celular/fisiologia , Embrião de Mamíferos , Desenvolvimento Embrionário
8.
Development ; 146(24)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31740534

RESUMO

Embryonic stem cells (ESCs) exist in at least two states that transcriptionally resemble different stages of embryonic development. Naïve ESCs resemble peri-implantation stages and primed ESCs the pre-gastrulation epiblast. In mouse, primed ESCs give rise to definitive endoderm in response to the pathways downstream of Nodal and Wnt signalling. However, when these pathways are activated in naïve ESCs, they differentiate to a cell type resembling early primitive endoderm (PrE), the blastocyst-stage progenitor of the extra-embryonic endoderm. Here, we apply this context dependency to human ESCs, showing that activation of Nodal and Wnt signalling drives the differentiation of naïve pluripotent cells toward extra-embryonic PrE, or hypoblast, and these can be expanded as an in vitro model for naïve extra-embryonic endoderm (nEnd). Consistent with observations made in mouse, human PrE differentiation is dependent on FGF signalling in vitro, and we show that, by inhibiting FGF receptor signalling, we can simplify naïve pluripotent culture conditions, such that the inhibitor requirements closer resemble those used in mouse. The expandable nEnd cultures reported here represent stable extra-embryonic endoderm, or human hypoblast, cell lines.This article has an associated 'The people behind the papers' interview.


Assuntos
Endoderma/embriologia , Fator Inibidor de Leucemia/fisiologia , Ligantes da Sinalização Nodal/fisiologia , Células-Tronco Pluripotentes/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Endoderma/citologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Ligantes da Sinalização Nodal/metabolismo , Transdução de Sinais/fisiologia
9.
BMC Dev Biol ; 19(1): 13, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272387

RESUMO

BACKGROUND: The segregation of the hypoblast and the emergence of the pluripotent epiblast mark the final stages of blastocyst formation in mammalian embryos. In bovine embryos the formation of the hypoblast has been partially studied, and evidence shows that MEK signalling plays a limited role in the segregation of this lineage. Here we explored the role of different signalling pathways during lineage segregation in the bovine embryo using immunofluorescence analysis of NANOG and SOX17 as readouts of epiblast and hypoblast, respectively. RESULTS: We show that SOX17 starts to be expressed in 16-32-cell stage embryos, whereas NANOG is first detected from 8-cell stage. SOX17 is first co-expressed with NANOG, but these markers become mutually exclusive by the late blastocyst stage. By assessing the expression kinetics of NANOG/SOX17 we show that inhibition of MEK signalling can eliminate SOX17 expression in bovine blastocysts, without altering NANOG expression. Modulation of WNT, PKC and LIF did not affect NANOG expression in the epiblast when used in combination with the ERK inhibitor. CONCLUSIONS: This study shows that SOX17 can be used as a reliable early marker of hypoblast in the bovine, and based on its expression profile we show that the hypoblast segregates in day 7 blastocysts. Furthermore, SOX17 expression is abolished using 1 µM of PD0325901, without affecting the NANOG population in the epiblast. Modulation of WNT, PKC and LIF are not sufficient to support enhanced NANOG expression in the epiblast when combined with ERK inhibitor, indicating that additional signalling pathways should be examined to determine their potential roles in epiblast expansion.


Assuntos
Blastocisto/citologia , Embrião de Mamíferos/embriologia , Camadas Germinativas/embriologia , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Benzamidas/farmacologia , Bovinos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Camadas Germinativas/citologia , Fator Inibidor de Leucemia/biossíntese , Proteína Homeobox Nanog/genética , Proteína Quinase C/biossíntese , Fatores de Transcrição SOXF/genética , Transdução de Sinais/fisiologia , Proteína Wnt1/biossíntese
10.
Dev Biol ; 432(1): 98-124, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882402

RESUMO

Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.


Assuntos
Gástrula/embriologia , Placenta/embriologia , Linha Primitiva/citologia , Linha Primitiva/embriologia , Animais , Diferenciação Celular/fisiologia , Biologia do Desenvolvimento/métodos , Endoderma/embriologia , Transição Epitelial-Mesenquimal , Feminino , Gástrula/metabolismo , Proteínas Hedgehog/metabolismo , Mesoderma/embriologia , Camundongos , Notocorda/embriologia , Placenta/metabolismo , Gravidez , Transdução de Sinais
11.
Dev Biol ; 415(1): 122-142, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27174471

RESUMO

The processes of development leading up to gastrulation have been markedly altered during the evolution of amniotes, and it is uncertain how the mechanisms of axis formation are conserved and diverged between mouse and chick embryos. To assess the conservation and divergence of these mechanisms, this study examined gene expression patterns during the axis formation process in Chinese soft-shell turtle and Madagascar ground gecko preovipositional embryos. The data suggest that NODAL signaling, similarly to avian embryos but in contrast to eutherian embryos, does not have a role in epiblast and hypoblast development in reptilian embryos. The posterior marginal epiblast (PME) is the initial molecular landmark of axis formation in reptilian embryos prior to primitive plate development. Ontogenetically, PME may be the precursor of the primitive plate, and phylogenetically, Koller's sickle and posterior marginal zone in avian development may have been derived from the PME. Most of the genes expressed in the mouse anterior visceral endoderm (AVE genes), especially signaling antagonist genes, are not expressed in the hypoblast of turtle and gecko embryos, though they are expressed in the avian hypoblast. This study proposes that AVE gene expression in the hypoblast and the visceral endoderm could have been independently established in avian and eutherian lineages, similar to the primitive streak that has been independently acquired in these lineages.


Assuntos
Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Lagartos/embriologia , Tartarugas/embriologia , Animais , Blastoderma/fisiologia , Padronização Corporal/genética , Endoderma/metabolismo , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Lagartos/genética , Lagartos/metabolismo , Proteína Nodal/fisiologia , Filogenia , Linha Primitiva/metabolismo , Especificidade da Espécie , Fatores de Transcrição/fisiologia , Tartarugas/genética , Tartarugas/metabolismo
12.
Biol Reprod ; 96(5): 948-959, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449095

RESUMO

The process of spatial rearrangement of cells of the inner cell mass (ICM) that are destined to become hypoblast is not well understood. The observation that the chemokine (C-C motif) ligand 24 (CCL24) and several other genes involved in chemokine signaling are expressed more in the ICM than in the trophectoderm of the bovine embryo resulted in the hypothesis that CCL24 participates in spatial organization of the ICM. Temporally, expression of CCL24 in the bovine embryo occurs coincidently with blastocyst formation: transcript abundance was low until the late morula stage, peaked in the blastocyst at Day 7 of development and declined by Day 9. Treatment of embryos with two separate antagonists of C-C motif chemokine receptor 3 (the prototypical receptor for CCL24) decreased the percent of GATA6+ cells (hypoblast precursors) that were located in the outside of the ICM. Similarly, injection of zygotes with a CCL24-specific morpholino decreased the percent of GATA6+ cells in the outside of the ICM. In conclusion, CCL24 assists in spatial arrangement of the ICM in the bovine embryo. This experiment points to new functions of chemokine signaling in the bovine embryo and is consistent with the idea that cell migration is involved in the spatial organization of hypoblast cells in the blastocyst.


Assuntos
Quimiocina CCL24/fisiologia , Animais , Blastocisto/fisiologia , Massa Celular Interna do Blastocisto , Fator de Transcrição CDX2/metabolismo , Bovinos , Quimiocina CCL24/antagonistas & inibidores , Quimiocina CCL24/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Fator de Transcrição GATA6 , Técnicas de Silenciamento de Genes , Camadas Germinativas/fisiologia , Mórula/fisiologia , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
13.
Dev Dyn ; 245(12): 1176-1188, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27666927

RESUMO

BACKGROUND: Previous comparative studies suggest that the requirement for Nodal in epiblast and hypoblast development is unique to mammalians. Expression of anterior visceral endoderm (AVE) genes in the visceral endoderm and of their orthologs in the hypoblast may be unique to mammalians and avians, and is absent in the reptilian hypoblast. Axis formation in reptiles is signaled by the formation of the posterior marginal epiblast (PME), which expresses a series of primitive streak genes. To assess the phylogenetic origin of Nodal and AVE gene expression and axis formation in amniotes, we examined marker gene expression in gray short-tailed opossum, a metatherian. RESULTS: Nodal was expressed in neither epiblast nor hypoblast of opossum embryos. No AVE genes were expressed in the opossum hypoblast. Attainment of polarity in the embryonic disk was signaled by Nodal, Wnt3a, Fgf8, and Bra expression in the PME at 8.5 days post-coitus. CONCLUSIONS: Nodal expression in epiblast or hypoblast may be unique to eutherians. AVE gene expression in visceral endoderm and hypoblast may have been independently acquired in eutherian and avian lineages. PME formation appears to be the event that signals axis formation in reptilian and metatherian embryos, and thus may be an ancestral characteristic of basal amniotes. Developmental Dynamics 245:1176-1188, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Monodelphis/embriologia , Monodelphis/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Monodelphis/classificação , Proteína Nodal/genética , Proteína Nodal/metabolismo , Filogenia
14.
Dev Biol ; 401(1): 17-24, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25446532

RESUMO

The epiblast is a single cell-layered epithelium which generates through gastrulation all tissues in an amniote embryo proper. Specification of the epiblast as a cell lineage in early development is coupled with that of the trophoblast and hypoblast, two lineages dedicated to forming extramebryonic tissues. The complex relationship between molecular specification and morphogenetic segregation of these three lineages is not well understood. In this review I will compare the ontogeny of epithelial epiblast in different amniote groups and emphasize the diversity in cell biological mechanisms employed by each group to reach this conserved epithelial structure as the pre-requisite for gastrulation. The limitations of associating cell fate with cell shape and position will also be discussed. In most amniote groups, bi-potential precursors for the epiblast and hypoblast, similar to the inner cell mass in the eutherian mammals, are not associated with an apolar, inside location in the blastocyst. Conversely, a blastocyst cell with epithelial morphology and superficial location is not indicative of its trophoblast fate. The polar trophoblast is absent in all amniotes except for the eutherian mammals. In the avian, reptilian and eutherian groups, epithelialization of the epiblast occurs after its fate specification and involves a mesenchymal-to-epithelial transition (MET) process, whereas in the monotremes and marsupials, pre-epiblast cells adopt an epithelial morphology prior to their commitment to the epiblast fate. The conservation of an epithelialized epiblast is viewed as an adaptation to evolutionary constraints placed on pre-gastrulation ectoderm in the ancestral amniote. The relationship between epiblast MET and epiblast pluripontency will also be discussed. Whether such an MET/epithelialization process is advantageous for the self-renewal and/or differentiation of human epiblast stem cells in vitro is unclear.


Assuntos
Polaridade Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Epitélio/fisiologia , Camadas Germinativas/fisiologia , Mesoderma/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Trofoblastos/fisiologia , Animais , Aves , Transdiferenciação Celular/fisiologia , Humanos , Mamíferos , Répteis , Especificidade da Espécie
15.
Mol Reprod Dev ; 83(2): 108-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26613191

RESUMO

The first lineage allocation during mouse development forms the trophectoderm and inner cell mass, in which Cdx2 and Pou5f1 display reciprocal expression. Yet Cdx2 is not required for trophectoderm specification in other mammals, such as the human, cow, pig, or in two marsupials, the tammar and opossum. The role of Cdx2 and Pou5f1 in the first lineage allocation of Sminthopsis macroura, the stripe-faced dunnart, is unknown. In this study, expression of Cdx2 and Pou5f1 during oogenesis, development from cleavage to blastocyst stages, and in the allocation of the first three lineages was analyzed for this dunnart. Cdx2 mRNA was present in late antral-stage oocytes, but not present again until Day 5.5. Pou5f1 mRNA was present from primary follicles to zygotes, and then expression resumed starting at the early unilaminar blastocyst stage. All cleavage stages and the pluriblast and trophoblast cells co-expressed CDX2 and POU5F1 proteins, which persisted until early stages of hypoblast formation. Hypoblast cells also show co-localisation of POU5F1 and CDX2 once they were allocated, and this persisted during their division and migration. Our studies suggest that CDX2, and possibly POU5F1, are maternal proteins, and that the first lineage to differentiate is the trophoblast, which differentiates to trophectoderm after shell loss one day before implantation. In the stripe-faced dunnart, cleavage cells, as well as trophoblast and pluriblast cells, are polarized, suggesting the continued presence of CDX2 in both lineages until late blastocyst stages may play a role in the formation and maintenance of polarity.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Marsupiais/embriologia , Fator 3 de Transcrição de Octâmero/biossíntese , Animais , Blastocisto/citologia , Humanos , Camundongos , RNA Mensageiro
16.
Growth Factors ; 33(5-6): 393-400, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26768755

RESUMO

Fibroblast growth factors (FGFs) and their receptors (FGFRs) are increasingly recognized as important regulators of embryo development in mammals. This study investigated the importance of FGF signaling during in vitro development of ovine embryo. The mRNAs of four FGFR subtypes were detected throughout preimplantation development of in vitro fertilized (IVF) embryos, peaked in abundance at the morula stage, and decreased significantly at the blastocyst stage. To gain insight into the role of these mRNAs in embryo development, IVF embryos were cultured in the presence of FGF2 (100 or 500 ng/ml: beginning from days 1 or 4 to 7) or PD173074 (1 µM: beginning from days 1 to 7) as usual treatments for activation or inhibition of FGFRs, respectively. FGF2-supplementation did not affect the percentage of embryos that developed to the blastocyst, blastocyst cell count and the proportion of cells allocated in inner cell mass (ICM) and trophectoderm (TE) compared to control (p > 0.05). Also, increasing the dosage or duration of FGF2 treatment did not significantly alter blastocyst yield or differential cell count (p > 0.05). PD173074-mediated inhibition of FGFRs did not significantly affect blastocyst yield (p > 0.05). Assessment of expression profiles of lineage-associated markers revealed that FGF2 (500 ng/ml) supplementation: (i) significantly increased expression of putative hypoblast marker (GATA4), (ii) significantly decreased expression of putative epiblast (EPI) marker (NANOG) and (iii) did not change TE markers (CDX2 and IFNT) and pluripotency makers (OCT4, SOX2 and REX1). In summary, FGF2-mediated activation of FGFRs may promote a switch in transcriptional profile of ovine ICM from EPI- to hypoblast-associated gene expression.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/biossíntese , Animais , Blastocisto/metabolismo , Feminino , Fator de Transcrição GATA4/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Masculino , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Ovinos
17.
Dev Cell ; 59(18): 2497-2505.e4, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38889726

RESUMO

To implant in the uterus, mammalian embryos form blastocysts comprising trophectoderm (TE) surrounding an inner cell mass (ICM), confined to the polar region by the expanding blastocoel. The mode of implantation varies between species. Murine embryos maintain a single layered TE until they implant in the characteristic thick deciduum, whereas human blastocysts attach via polar TE directly to the uterine wall. Using immunofluorescence (IF) of rapidly isolated ICMs, blockade of RNA and protein synthesis in whole embryos, or 3D visualization of immunostained embryos, we provide evidence of multi-layering in human polar TE before implantation. This may be required for rapid uterine invasion to secure the developing human embryo and initiate formation of the placenta. Using sequential fluorescent labeling, we demonstrate that the majority of inner TE in human blastocysts arises from existing outer cells, with no evidence of conversion from the ICM in the context of the intact embryo.


Assuntos
Blastocisto , Ectoderma , Implantação do Embrião , Trofoblastos , Humanos , Feminino , Blastocisto/metabolismo , Blastocisto/citologia , Implantação do Embrião/fisiologia , Trofoblastos/metabolismo , Trofoblastos/citologia , Ectoderma/metabolismo , Ectoderma/citologia , Animais , Gravidez , Camundongos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia , Útero/metabolismo , Útero/citologia
18.
Cell Stem Cell ; 31(7): 1058-1071.e5, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823388

RESUMO

The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Fatores de Crescimento de Fibroblastos , Células-Tronco Pluripotentes , Humanos , Fatores de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Blastocisto/metabolismo , Blastocisto/citologia , Animais , Transdução de Sinais , Camundongos , Modelos Biológicos , Camadas Germinativas/metabolismo , Camadas Germinativas/citologia
19.
Methods Mol Biol ; 2767: 1-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37351840

RESUMO

Under certain culture conditions, naive human pluripotent stem cells can generate human blastocyst-like structures (called human blastoids). Human blastoids serve as an accessible model for human blastocysts and are amenable for large-scale production. Here, we describe a detailed step-by-step protocol for the robust and high-efficient generation of human blastoids from naive human pluripotent stem cells.


Assuntos
Células-Tronco Pluripotentes , Humanos , Blastocisto , Diferenciação Celular
20.
Methods Mol Biol ; 2416: 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870826

RESUMO

Until recently, naïve pluripotent stem cell lines were not captured from human embryos because protocols were based upon those devised for murine embryonic stem cells. In contrast with early lineage segregation in mouse embryos, human hypoblast specification is not solely dependent upon FGF signaling; consequently, its maturation during embryo explant culture may provide inductive signals to drive differentiation of the epiblast. To overcome this potential risk, here we describe how cells of the immature inner cell mass of human embryos can be physically separated during derivation, achieved via "immunosurgery", to eliminate the trophectoderm, followed by disaggregation of the remaining inner cell mass cells. A modification of a culture regime developed for propagation of human pluripotent stem cells reset to the naïve state is used, which comprises serum-free medium supplemented with various inhibitors of signaling pathways, polarization, and differentiation. Colonies arising from the first plating of an inner cell mass may be pooled for ease of handling, or propagated separately to allow establishment of clonal human naïve embryonic stem cell lines.


Assuntos
Células-Tronco Embrionárias , Distanciamento Físico , Animais , Blastocisto , Diferenciação Celular , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Camadas Germinativas , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa