Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0089824, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345182

RESUMO

The cefazolin inoculum effect (CzIE) has been associated with poor clinical outcomes in patients with methicillin-susceptible Staphylococcus aureus (MSSA) infections. We aimed to investigate the point prevalence of the CzIE among nasal colonizing MSSA isolates from ICU patients in a multicenter study in Colombia (2019-2023). Patients underwent nasal swabs to assess for S. aureus colonization on admission to the ICU, and some individuals had follow-up swabs. We performed cefazolin MIC by broth microdilution using standard and high inoculum and developed a modified nitrocefin-based rapid test to detect the CzIE. Whole-genome sequencing was carried out to characterize BlaZ types and allotypes, phylogenomics, and Agr-typing. A total of 352 patients were included; 46/352 (13%) patients were colonized with S. aureus and 22% (10/46) and 78% (36/46) with MRSA and MSSA, respectively. Among 36 patients who contributed with 43 MSSA colonizing isolates, 21/36 (58%) had MSSA exhibiting the CzIE. BlaZ type A and BlaZ-2 were the predominant type and allotype in 56% and 52%, respectively. MSSA belonging to CC30 were highly associated with the CzIE, and single-nucleotide polymorphism (SNP) analyses supported possible transmission of MSSA exhibiting the CzIE among some patients of the same unit. The modified nitrocefin rapid test had 100%, 94.4%, and 97.7% sensitivity, specificity, and accuracy, respectively. We found a high point prevalence of the CzIE in MSSA colonizing the nares of critically ill patients in Colombia. A modified rapid test was highly accurate in detecting the CzIE in this patient population.

2.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914943

RESUMO

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Prata/farmacologia , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Clavibacter , Moringa oleifera/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde , Folhas de Planta/microbiologia
3.
J Nutr ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349292

RESUMO

BACKGROUND: An in vivo/in vitro ileal fermentation assay using growing pigs has shown important fermentability and organic acid production. This assay could be used to study human foods but needs validation. OBJECTIVE: To validate using a pig inoculum for studying human ileal fermentation by comparing the in vitro fermentation of fibre substrates using ileal inocula prepared from growing pigs or human ileostomates. METHODS: Ten pigs (19±4.5 kg bodyweight, mean±SD) received a diet containing human foods. After two weeks, ileal digesta were collected 5 hours post-meal. Five recruited human ileostomates incorporated the same human foods into their diet for a week before consuming two meals similar to the pigs' diet. Ileal effluents were then collected from 2-6 hours post-meal. The porcine ileal digesta and human ileal effluents were used for microbial analysis and in vitro fermentation of arabinogalactan (AG), fructooligosaccharides (FOS), and pectin (PEC). RESULTS: The in vitro organic matter fermentability of AG, FOS, and PEC was similar (P > 0.05) between the pig and human ileal inocula (34±2.13% on average). Regardless of substrates, the propionic and lactic acid production was similar between humans and pigs (P > 0.05). Ninety percent of the ileal bacterial genera were found in similar (P > 0.05) numbers in pigs and human ileostomates, which accords with the similar (P > 0.05) Shannon Diversity Index and predicted metabolic activity. However, some of the most abundant genera were different between species, such as Granulicatella which had 83-fold greater (P ≤ 0.05) numbers in human ileostomates, and Lactobacillus had 272-fold greater (P ≤ 0.05) numbers in pigs. CONCLUSION: The in vitro ileal fermentation patterns were similar across species despite some ileal microbial compositional differences, suggesting that the growing pig could be used as a model to provide an ileal inoculum for studying ileal fermentation in adult humans. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE WHERE IT WAS OBTAINED: Registered under ACTRN12622000813785 on the Australian New Zealand Clinical Trials Registry (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=384165).

4.
Int Microbiol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039379

RESUMO

Turkey litter waste is lignocellulosic waste that can be sustainably used as an energy source through anaerobic digestion (AD). The 16S ribosomal RNA technique helps to unravel microbial diversity and predominant metabolic pathways. The assays were performed in 600-mL-glass bottles with 400 mL volume, for 60 days at 37 °C. The study evaluated the physicochemical parameters, the composition of the microbiota, and the functional inference in AD of different concentrations of turkey litter (T) using two inocula: granular inoculum (S) and commercial inoculum (B). The highest accumulated methane production (633 mL CH4·L-1) was observed in the test containing 25.5 g VS·L-1 of turkey litter with the addition of the two inocula (T3BS). In tests without inoculum (T3) and with commercial inoculum (T3B), there was an accumulation of acids and consequent inhibition of methane production 239 mL CH4·L-1 and 389 mL CH4·L-1, respectively. Bacteroidota, Firmicutes, and Actinobacteria were the main phyla identified. The presence of archaea Methanobacterium, Methanocorpusculum, and Methanolinea highlighted the hydrogenotrophic metabolic pathway in T3BS. Functional prediction showed enzymes involved in three metabolic pathways in turkey litter biodigestion: acetotrophic, hydrogenotrophic, and methylotrophic methanogenesis. The predominant hydrogenotrophic pathway can be observed by analyzing the microbiota, archaea involved in this specific pathway, genes involved, and relative acid consumption for T3S and T3BS samples with higher methane production. Molecular tools help to understand the main groups of microorganisms and metabolic pathways involved in turkey litter AD, such as the use of different inocula, allowing the development of strategies for the sustainable disposal of turkey litter.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38216844

RESUMO

The inoculum effect, characterized by diminished antibacterial activity at high bacterial inocula, is studied in the context of beta-lactam and beta-lactamase inhibitor combinations against beta-lactamase-producing Enterobacterales. The inhibition of ESBL + OXA-48 and KPC enzymes, in combination with ceftazidime, demonstrates encouraging results. In this study, 20 Klebsiella pneumoniae isolates were tested with different inocula (1-5 × 105 and 1-5 × 107 cfu/ml) using broth microdilution methods. The inoculum effect was observed in meropenem against OXA-48 + CTX-M-15- and KPC-2-producing isolates but not with ceftazidime/avibactam. Notably, meropenem exhibited inoculum effect against carbapenemase-producing strains, whereas ceftazidime-avibactam remained effective. We conclude that ceftazidime-avibactam is recommended for high-inoculum infections.

6.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
7.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38936822

RESUMO

AIMS: Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. METHODS AND RESULTS: In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. CONCLUSIONS: Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.


Assuntos
Inoculantes Agrícolas , Biomassa , Micorrizas , Raízes de Plantas , Microbiologia do Solo , Solo , Vitis , Micorrizas/fisiologia , Micorrizas/crescimento & desenvolvimento , Vitis/microbiologia , Vitis/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Inoculantes Agrícolas/fisiologia , Solo/química , Nutrientes/metabolismo , Vinho/microbiologia , Vinho/análise , Agricultura/métodos
8.
Appl Microbiol Biotechnol ; 108(1): 454, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215841

RESUMO

Microbial toxicity tests play an important role in various scientific and technical fields including the risk assessment of chemical compounds in the environment. There is a large battery of normalized tests available that have been standardized by ISO (International Organization for Standardization) and OECD (Organization for Economic Co-operation and Development) and which are worldwide accepted and applied. The focus of this review is to provide information on microbial toxicity tests, which are used to elucidate effects in other laboratory tests such as biodegradation tests, and for the prediction of effects in natural and technical aqueous compartments in the environment. The various standardized tests as well as not normalized methods are described and their advantages and disadvantages are discussed. In addition, the sensitivity and usefulness of such tests including a short comparison with other ecotoxicological tests is presented. Moreover, the far-reaching influence of microbial toxicity tests on biodegradation tests is also demonstrated. A new concept of the physiological potential of an inoculum (PPI) consisting of microbial toxicity tests whose results are expressed as a chemical resistance potential (CRP) and the biodegradation adaptation potential (BAP) of an inoculum is described that may be helpful to characterize inocula used for biodegradation tests. KEY POINTS: • Microbial toxicity tests standardized by ISO and OECD have large differences in sensitivity and applicability. • Standardized microbial toxicity tests in combination with biodegradability tests open a new way to characterize inocula for biodegradation tests. • Standardized microbial toxicity tests together with ecotoxicity tests can form a very effective toolbox for the characterization of toxic effects of chemicals.


Assuntos
Biodegradação Ambiental , Testes de Toxicidade , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Organização para a Cooperação e Desenvolvimento Econômico , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Ecotoxicologia/métodos , Ecotoxicologia/normas
9.
Phytopathology ; 114(6): 1289-1294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38330212

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the main diseases of wheat worldwide. Mianyang of Sichuan province in Southwest China is one of main regions for winter Pst inoculum production and spring epidemic and provides urediniospores for infecting wheat in the surrounding regions. Understanding the urediniospore dynamics is important to predict and manage stripe rust. In this study, spore trapping coupled with a TaqMan real-time quantitative PCR method was used to monitor airborne Pst urediniospores from December 2019 to December 2022 in Mianyang. Weather conditions (temperature, relative humidity, daily sunshine duration, and precipitation) were collected for the same period. These data were used to study the relationship of airborne urediniospore density with climatic conditions. The results showed that Pst urediniospores were captured all year round, and the annual peak of urediniospore densities occurred in the period from March to April in which the urediniospores accounted for the largest proportion of the annual total urediniospores. The density of urediniospores in the period of March to April was linearly related to the average sunshine duration of 20 days and average temperature of 15 days prior to the final day of a 7-day trapping period. This relationship needs to be tested in other regions where Pst can sporulate during the winter before it can be integrated with Pst infection conditions to predict rust development.


Assuntos
Doenças das Plantas , Puccinia , Esporos Fúngicos , Triticum , China , Doenças das Plantas/microbiologia , Triticum/microbiologia , Puccinia/fisiologia , Estações do Ano , Temperatura , Basidiomycota/fisiologia , Conceitos Meteorológicos
10.
Phytopathology ; 114(3): 558-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37811832

RESUMO

Canopy management practices can be effective as part of the integrated management of grapevine diseases. This study aimed to determine whether training systems and plastic covers can contribute to prevent Asian grapevine leaf rust (AGLR) development. Additionally, the influence of crop season and inoculum availability on AGLR development was investigated. Six-season experiments were carried out to characterize 16 epidemics that developed from natural inoculum (NI) or artificial inoculum (AI) sources (NI + AI), conducted in different training systems and with or without the plastic cover. The Richards model was fitted to each AGLR disease progress curve to estimate and compare the onsets and intensities of epidemics using eight curve elements. Principal components analysis (PCA) identified the incidence progress rate, the area under the severity progress curve, final disease severity, time to disease onset, and time to reach the inflection point as the main descriptors for AGLR epidemics. The results showed that AGLR epidemic development was related mainly to differences in inoculum availability and climatic conditions throughout the seasons and to a lower extent to the training system and plastic cover. The earliest disease onset was observed in epidemics when the NI was supplemented with an AI source. Differences in AGRL intensity were correlated to accumulated precipitation, being less severe in autumn-winter than in the spring-summer season. The present findings provided a better understanding of the structure and the seasonal variation of AGLR in cultivar 'Niagara Rosada'. The strategies for reducing and/or delaying inoculum buildup among seasons are discussed.


Assuntos
Basidiomycota , Doenças das Plantas , Estações do Ano , Doenças das Plantas/prevenção & controle
11.
Biotechnol Lett ; 46(5): 767-780, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38844647

RESUMO

Chlorimuron-ethyl is currently the primary herbicide used for chemical weed control in a soybean field. In this study, a solid microbial inoculum (corn stalk-white rot fungus (W-1)) was prepared for the remediation of farmland soil contaminated by chlorimuron-ethyl. Firstly, the preparation method of the microbial inoculum was studied. Secondly, the degradation rate of the chlorimuron-ethyl in the ground by the solid microbial inoculum is improved by optimizing the proportion of the protective agent. Then the effects of applying solid microbial inoculum, free bacteria and corn straw on the degradation rate of chlorimuron-ethyl in soil were weighed. Finally, Illumina MiSeq sequencing was used to measure the composition and diversity of bacterial and fungal communities in the ground before and after using microbial inoculum. The degradation rate of chlorimuron-ethyl in soil by solid microbial inoculum was 84.87% after 20 d using corn straw as the support, room temperature drying, 4% Ca3(PO4)2 as the protective drying agent, and 1%(w) dextrin as the ultraviolet protective agent. Inoculation of white rot fungi could significantly affect the community structure of bacteria and fungi in the soil, making the chlorimuron-ethyl degrading communities become the dominant communities and playing an essential role in the degradation of chlorimuron-ethyl. The results showed that using solid microbial inoculum was an effective way to repair farmland soil polluted by chlorimuron-ethyl.


Assuntos
Biodegradação Ambiental , Herbicidas , Microbiologia do Solo , Poluentes do Solo , Compostos de Sulfonilureia , Poluentes do Solo/metabolismo , Compostos de Sulfonilureia/metabolismo , Herbicidas/metabolismo , Pirimidinas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Zea mays/microbiologia , Fungos/metabolismo , Fungos/genética
12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34021080

RESUMO

The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Carga Bacteriana/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Peptidomiméticos/farmacologia , Staphylococcus aureus/patogenicidade , Estereoisomerismo
13.
Plant Dis ; 108(3): 757-768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787686

RESUMO

Grape white rot can cause considerable yield losses in viticulture areas worldwide and is principally caused by Coniella diplodiella. The fungus overwinters in berry mummies on the soil surface or on the trellis and produces pycnidia and conidia that serve as primary inoculum. However, little is known about the temporal dynamics and dispersal pattern of C. diplodiella conidia. In this study, we investigated the production and dispersal of C. diplodiella conidia from a primary inoculum source, namely, affected mummified berries that overwintered in two vineyards in northern Italy in 2021 and 2022. Conidia of C. diplodiella were repeatedly produced in berry mummies from the budburst of vines to harvesting, with approximately 50 and 75% of the total conidia in a season being produced before fruit set and véraison, respectively. The production dynamics of C. diplodiella conidia over time were described by a Weibull equation in which the thermal time is the independent variable, with a concordance correlation coefficient of ≥0.964. A rainfall cutoff of ≥0.2 mm provided an overall accuracy of ≥0.86 in predicting conidial dispersal through rain splashes from berry mummies on the soil surface, with the number of dispersed conidia increasing with the amount of rainfall. The dispersal of conidia from mummies on the trellis by washing with rain required at least 6.1 mm of rain. The proposed mathematical equations and rain cutoffs can be used to predict periods with a high dispersal risk of C. diplodiella.


Assuntos
Ascomicetos , Vitis , Vitis/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos , Solo
14.
Plant Dis ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182161

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a continuous threat to global wheat production. In 2021, the epidemic of wheat stripe rust in China affected approximately 4.5 million hectares, resulting in severe yield losses. When confronted with the epidemic, tracing the sources of the pathogen can offer valuable insights for disease prevention and control. This study was conducted to analyze the genetic structure, aerodynamics, geographical features, and cultivation practices of the pathogen population in various wheat-producing regions, and to further reveal the spread patterns of the stripe rust pathogens in China. The findings indicated an overall trend of the pathogen dissemination from the west to the east. The pathogen was primarily spread from the northwestern region to the Huang-Huai-Hai region through the Guanzhong Plain and the NanXiang Plain. Meanwhile, the pathogen was also spread eastward from the southwestern region to the lower reaches of the Yangtze River, utilizing the Jianghan Plain as a bridge and the Yangtze River Valley in southwestern Anhui as the main pathway. Furthermore, the pathogen spread northward into Shandong under the driving force of the southeast winds. The findings of this study may provide valuable insights for the integrated management of wheat stripe rust in China.

15.
Plant Dis ; 108(6): 1776-1785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243178

RESUMO

Sida golden mosaic virus (SiGMV), an obligate pathogen that infects snap beans (Phaseolus vulgaris), is known to infect prickly sida (Sida spinosa L.), which is a common weed in agricultural farms in Georgia. Prickly sida has also been reported as a suitable host of sweetpotato whitefly (Bemisia tabaci), the vector of SiGMV. Despite being a host for both SiGMV and its vector, the role of prickly sida as a reservoir and inoculum source for SiGMV in snap bean farms has not been evaluated. This study was conducted to document the occurrence of SiGMV-infected prickly sida plants and to assess its potential role as a source of SiGMV inoculum in snap bean farms. A survey of 17 commercial snap bean farms conducted in spring 2021 confirmed the presence of SiGMV-infected prickly sida in southern Georgia. In fall 2021 and 2022, on-farm field trials were conducted in four commercial farms where SiGMV-infected prickly sida plants were documented earlier as a part of survey in spring 2021. The spatial distribution and temporal patterns of adult whiteflies and SiGMV on snap bean were compared between macroplots (13.7 × 30.5 m) "with prickly sida" or "without prickly sida" that were at least 232 m apart from each other. We did not observe any consistent differences in counts of adult whiteflies between macroplots with or without prickly sida in the four commercial farms. SiGMV infection was detected earlier and with higher incidences in snap bean macroplots "with prickly sida" compared with macroplots "without prickly sida." An apparent disease gradient was observed in two of the four farms assessed. Higher SiGMV incidences were observed on the edges of macroplots "with prickly sida." These findings indicate prickly sida as a potential natural reservoir and a source for SiGMV spread in snap bean farms in southern Georgia.


Assuntos
Hemípteros , Phaseolus , Doenças das Plantas , Georgia , Doenças das Plantas/virologia , Animais , Phaseolus/virologia , Hemípteros/virologia , Fazendas , Insetos Vetores/virologia
16.
Plant Dis ; : PDIS06231154RE, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37775922

RESUMO

A mandatory tomato-free period (TFP) was implemented in the state of Goiás, Brazil, in 2007 to help manage diseases caused by whitefly-transmitted begomoviruses. The impact of the TFP was examined in five locations across three states in Central Brazil from 2013 to 2016. Surveys revealed significant differences in begomovirus disease incidence among locations, i.e., low in Guaíra-TFP and Patos de Minas-TFP; moderate-high in Itaberaí-TFP and Morrinhos-TFP; and high in the non-TFP (NTFP) control, Cristalina-NTFP. PCR tests and DNA sequencing were used to validate the symptoms and showed that all collected symptomatic plant samples were infected with tomato severe rugose virus (ToSRV), a common indigenous bipartite begomovirus. Early season surveys (20 to 40 days after transplants [DAT]) in Itaberaí-TFP and Morrinhos-TFP revealed significantly less begomovirus disease in fields established sooner after the TFP (0 to 2 months) compared with incidences in (i) equivalent early planted fields in the Cristalina-NTFP control and (ii) fields established longer after the end of the TFP (>2 to 5 months). Whitefly infestation of crops was detected year-round in all locations and years, and all tested adults were classified in the Bemisia tabaci MEAM1 cryptic species. Infestation levels were significantly higher during the summer but did not vary significantly among locations. Results of monthly monitoring of adult whiteflies for general begomovirus and ToSRV were positively correlated and were indicators of disease incidence in the field. Notably, ToSRV was not detected in whiteflies collected from nontomato plants during the TFP, and there was a longer lag period before detection in whiteflies collected from processing tomatoes for Itaberaí-TFP and Morrinhos-TFP compared with Cristalina-NTFP. Taken together with the low levels of ToSRV infection detected in potential nontomato reservoir hosts at all locations, our results revealed low levels of primary inoculum during the TFP. Thus, even in a complex agroecosystem with year-round whitefly infestation of crops, the TFP was beneficial due to delayed and reduced begomovirus disease pressure during a critical stage of plant development (first month) and for favoring low levels of primary inoculum. Thus, we concluded that the TFP should be part of a regional integrated pest management (IPM) program targeting ToSRV in Brazil.

17.
J Environ Manage ; 351: 119693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042069

RESUMO

Preserving rumen fluid as the inoculum for anaerobic digestion of food waste is necessary when access to animal donors or slaughterhouses is limited. This study aims to compare two preservation methods relative to fresh ruminal inoculum: (1) cryoprotected with 5% dimethyl sulfoxide (DMSO) and stored at -20 °C and (2) frozen at -20 °C, both for 6 months. The fermentation activity of different inoculum was evaluated by rumen-based in vitro anaerobic fermentation tests (volatile fatty acids, biomass digestibility, and gas production). Citrus pomace was used as the substrate during a 96-h fermentation. The maximum volatile fatty acids, methane production, and citrus pomace digestibility from fresh rumen fluid were not significantly different from rumen fluid preserved with DMSO. Metagenome analysis revealed a significant difference in the rumen microbial composition and functions between fresh rumen fluid and frozen inoculum without DMSO. Storage of rumen fluid using -20 °C with DMSO demonstrated the less difference compared with fresh rumen fluid in microbial alpha diversity and taxa composition. The hierarchical clustering tree of CAZymes showed that DMSO cryoprotected fluid was clustered much closer to the fresh rumen fluid, showing more similarity in CAZyme profiles than frozen rumen fluid. The abundance of functional genes associated with carbohydrate metabolism and methane metabolism did not differ between fresh rumen fluid and the DMSO-20 °C, whereas the abundance of key functional genes significantly decreased in frozen rumen fluid. These findings suggest that using rumen liquid preserved using DMSO at -20 °C for 180 days is a feasible alternative to fresh rumen fluid. This would reduce the need for laboratories to maintain animal donors and/or reduce the frequency of collecting rumen fluid from slaughterhouses.


Assuntos
Microbiota , Eliminação de Resíduos , Animais , Dimetil Sulfóxido/metabolismo , Biocombustíveis , Alimentos , Rúmen/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Metano , Dieta , Ácidos Graxos/metabolismo , Ração Animal/análise
18.
J Environ Manage ; 354: 120328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354615

RESUMO

This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.


Assuntos
Bacillus , Compostagem , Microbiota , Animais , Bacillus/metabolismo , Galinhas , Esterco/microbiologia , Odorantes , Amônia/análise , Nitrogênio/análise , Bactérias/metabolismo , Nutrientes , Fósforo , Potássio , Solo/química
19.
J Environ Sci Health B ; 59(4): 131-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314812

RESUMO

Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.


Assuntos
Compostagem , Animais , Bovinos , Suínos , Matadouros , Odorantes/prevenção & controle , Solo , Biodegradação Ambiental , Esterco
20.
World J Microbiol Biotechnol ; 40(8): 238, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858319

RESUMO

Ectomycorrhizal inoculum has emerged as a critical tool for forest restoration, especially under challenging climate change conditions. The inoculation of selective ectomycorrhizal fungi can enhance seedling survival and subsequent growth in the field. This study optimized the liquid media for mycelial growth of Astraeus odoratus strain K1 and the sodium alginate solution composition for enhanced mycelial viability after entrapment. Using Modified Melin-Norkrans as the optimal media for mycelial cultivation and 2% sodium alginate supplemented with Czapek medium, 0.25% activated charcoal, 5% sucrose, and 5% sorbitol in the alginate solution yielded the highest viability of A. odoratus mycelia. Preservation in distilled water and 10% glycerol at 25 °C for 60 days proved to be the most effective storage condition for the alginate beads. Both fresh and preserved alginate beads were tested for colonizing on Hopea odorata Roxb. seedlings, showing successful colonization and ectomycorrhizal root formation, with over 49% colonization. This study fills a crucial gap in biotechnology and ectomycorrhizal inoculum, paving the way for more effective and sustainable forest restoration practices.


Assuntos
Alginatos , Micélio , Micorrizas , Alginatos/química , Micorrizas/fisiologia , Micélio/crescimento & desenvolvimento , Meios de Cultura/química , Plântula/microbiologia , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa