Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(16): e202400422, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380500

RESUMO

An overreactive stress granule (SG) pathway and long-lived, stable SGs formation are thought to participate in the progress of neurodegenerative diseases (NDs). To understand if and how SGs contribute to disorders of neurotransmitter release in NDs, we examined the interaction between extracellular isolated SGs and vesicles. Amperometry shows that the vesicular content increases and dynamics of vesicle opening slow down after vesicles are treated with SGs, suggesting larger vesicles are formed. Data from transmission electron microscopy (TEM) clearly shows that a portion of large dense-core vesicles (LDCVs) with double/multiple cores appear, thus confirming that SGs induce homotypic fusion between LDCVs. This might be a protective step to help cells to survive following high oxidative stress. A hypothetical mechanism is proposed whereby enriched mRNA or protein in the shell of SGs is likely to bind intrinsically disordered protein (IDP) regions of vesicle associated membrane protein (VAMP) driving a disrupted membrane between two closely buddled vesicles to fuse with each other to form double-core vesicles. Our results show that SGs induce homotypic fusion of LDCVs, providing better understanding of how SGs intervene in pathological processes and opening a new direction to investigations of SGs involved neurodegenerative disease.


Assuntos
Catecolaminas , Doenças Neurodegenerativas , Humanos , Catecolaminas/metabolismo , Doenças Neurodegenerativas/metabolismo , Grânulos de Estresse , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
2.
Angew Chem Int Ed Engl ; 61(15): e202116217, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129861

RESUMO

We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .


Assuntos
Catecolaminas , Catecolaminas/metabolismo
3.
J Neurosci ; 39(1): 18-27, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389842

RESUMO

The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Vesículas Citoplasmáticas/metabolismo , Éxons/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
4.
Cell Tissue Res ; 368(2): 249-258, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28144784

RESUMO

Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular , Movimento Celular , Neurônios/citologia , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
5.
Anal Biochem ; 536: 1-7, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760673

RESUMO

The study of chromaffin secretory vesicles (SVs) has contributed immensely to our understanding of exocytosis. These organelles, also called chromaffin granules, are a specific type of large dense secretory vesicle found in many endocrine cells and neurons. Traditionally, they have been isolated from bovine adrenal glands due to the large number of SVs that can be obtained from this tissue. However, technical advances now make it possible to obtain very pure preparations of SVs from mice, which is particular interesting for functional studies given the availability of different genetically modified strains of mice. Despite the small size of the mouse adrenal medulla (400-500 µm and less than 2 mg in weight), we have successfully carried out functional studies on SVs isolated from WT and knockout mice. As such, we present here our method to purify crude vesicles and to fractionate mouse chromaffin SVs, along with examples of their functional characterization.


Assuntos
Grânulos Cromafim/metabolismo , Vesículas Secretórias/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vesículas Secretórias/química
6.
Small ; 12(40): 5524-5529, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27551968

RESUMO

Silicon nanowire field-effect transistors modified with specific aptamers can directly detect the minute dopamine and neuropeptide Y released from cells. The binding of these molecules to the aptamers results in a conductance change of the transistor biosensor and illustrates the differential releasing mechanisms of these molecules stored in various vesicle pools.


Assuntos
Aptâmeros de Peptídeos/química , Dopamina/análise , Histamina/farmacologia , Nanofios/química , Neuropeptídeo Y/análise , Transistores Eletrônicos , Animais , Células PC12 , Ratos , Silício/química
7.
FASEB J ; 27(8): 3167-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23640057

RESUMO

Proteins responsible for basal and stimulated endocytosis in nerves containing small clear synaptic vesicles (SCSVs) or large dense-core vesicles (LDCVs) are revealed herein, using probes that exploit surface-exposed vesicle proteins as acceptors for internalization. Basal uptake of botulinum neurotoxins (BoNTs) by both SCSV-releasing cerebellar granule neurons (CGNs) and LDCV-enriched trigeminal ganglionic neurons (TGNs) was found to require protein acceptors and acidic compartments. In addition, dynamin, clathrin, adaptor protein complex-2 (AP2), and amphiphysin contribute to the depolarization-evoked entry. For fast recycling of SCSVs, knockdown and knockout strategies demonstrated that CGNs use predominantly dynamin 1, whereas isoform 2 and, to a smaller extent, isoform 3 support a less rapid mode of stimulated endocytosis. Accordingly, proximity ligation assay confirmed that dynamin 1 and 2 colocalize with amphiphysin 1 in CGNs, and the latter copurified with both dynamins from cell extracts. In contrast, LDCV-releasing TGNs preferentially employ dynamins 2 and 3 and amphiphysin 1 for evoked endocytosis and lack the fast phase. Hence, stimulation recruits dynamin, clathrin, AP2, and amphiphysin to augment BoNT internalization, and neurons match endocytosis mediators to the different demands for locally recycling SCSVs or replenishing distally synthesized LDCVs.


Assuntos
Toxinas Botulínicas/metabolismo , Endocitose , Neurônios/metabolismo , Neurotoxinas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas Tipo A , Células Cultivadas , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurotoxinas/genética , Peptídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/metabolismo
8.
Cell Cycle ; 21(5): 531-546, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35067177

RESUMO

Exocytosis of large dense core vesicles is responsible for hormone secretion in neuroendocrine cells. The population of primed vesicles ready to release upon cell excitation demonstrates large heterogeneity. However, there are currently no models that clearly reflect such heterogeneity. Here, we develop a novel model based on single vesicle release events from amperometry recordings of PC12 cells using carbon fiber microelectrode. In this model, releasable vesicles can be grouped into two subpopulations, namely, SP1 and SP2. SP1 vesicles replenish quickly, with kinetics of ~0.0368 s-1, but likely undergo slow fusion pore expansion (amperometric signals rise at ~2.5 pA/ms), while SP2 vesicles demonstrate slow replenishment (kinetics of ~0.0048 s-1) but prefer fast dilation of fusion pore, with an amperometric signal rising rate of ~9.1 pA/ms. Phorbol ester enlarges the size of SP2 partially via activation of protein kinase C and conveys SP1 vesicles into SP2. Inhibition of Rho GTPase-dependent actin rearrangement almost completely depletes SP2. We also propose that the phorbol ester-sensitive vesicle subpopulation (SP2) is analogous to the subset of superprimed synaptic vesicles in neurons. This model provides a meticulous description of the architecture of the readily releasable vesicle pool and elucidates the heterogeneity of the vesicle priming mechanism.


Assuntos
Vesículas de Núcleo Denso , Exocitose , Animais , Exocitose/fisiologia , Células PC12 , Ésteres de Forbol/metabolismo , Ratos , Vesículas Sinápticas/metabolismo
9.
Adv Sci (Weinh) ; 9(27): e2202263, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896896

RESUMO

Large dense-core vesicles (LDCVs) are larger in volume than synaptic vesicles, and are filled with multiple neuropeptides, hormones, and neurotransmitters that participate in various physiological processes. However, little is known about the mechanism determining the size of LDCVs. Here, it is reported that secretogranin II (SgII), a vesicle matrix protein, contributes to LDCV size regulation through its liquid-liquid phase separation in neuroendocrine cells. First, SgII undergoes pH-dependent polymerization and the polymerized SgII forms phase droplets with Ca2+ in vitro and in vivo. Further, the Ca2+ -induced SgII droplets recruit reconstituted bio-lipids, mimicking the LDCVs biogenesis. In addition, SgII knockdown leads to significant decrease of the quantal neurotransmitter release by affecting LDCV size, which is differently rescued by SgII truncations with different degrees of phase separation. In conclusion, it is shown that SgII is a unique intravesicular matrix protein undergoing liquid-liquid phase separation, and present novel insights into how SgII determines LDCV size and the quantal neurotransmitter release.


Assuntos
Neuropeptídeos , Secretogranina II , Vesículas de Núcleo Denso , Hormônios , Lipídeos , Neurotransmissores/metabolismo , Secretogranina II/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-29312145

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that posttranscriptionally regulate gene expression inside the cell. Extracellular circulating miRNAs are also observed outside the cell, but their origin is poorly understood. Recently, miRNA has been shown to be exocytosed by vesicle fusion; this observation demonstrates that vesicle-free miRNAs are secreted from neuroendocrine cells, in a manner similar to hormone secretion. miRNAs are stored in large dense-core vesicles together with catecholamines, then released by vesicle fusion in response to stimulation; in this way, vesicle-free miRNA may regulate cell-to-cell communication including the regulation of gene expression and cellular signaling. Therefore, miRNA has been suggested to function as a hormone; i.e., a ribomone (ribonucleotide + hormone). This review focuses on the mechanisms by which vesicle-free miRNAs are secreted from neuroendocrine cells and will discuss potential functions of vesicle-free miRNAs and how vesicle-free miRNAs regulate cell-to-cell communication.

11.
Neuroscience ; 346: 1-13, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28089870

RESUMO

Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.


Assuntos
Exocitose , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células Cultivadas , Camundongos
12.
Math Biosci ; 283: 60-70, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838280

RESUMO

Most endocrine cells secrete hormones as a result of Ca2+-regulated exocytosis, i.e., fusion of the membranes of hormone-containing secretory granules with the cell membrane, which allows the hormone molecules to escape to the extracellular space. As in neurons, electrical activity and cell depolarization open voltage-sensitive Ca2+ channels, and the resulting Ca2+ influx elevate the intracellular Ca2+ concentration, which in turn causes exocytosis. Whereas the main molecular components involved in exocytosis are increasingly well understood, quantitative understanding of the dynamical aspects of exocytosis is still lacking. Due to the nontrivial spatiotemporal Ca2+ dynamics, which depends on the particular pattern of electrical activity as well as Ca2+ channel kinetics, exocytosis is dependent on the spatial arrangement of Ca2+ channels and secretory granules. For example, the creation of local Ca2+ microdomains, where the Ca2+ concentration reaches tens of µM, are believed to be important for triggering exocytosis. Spatiotemporal simulations of buffered Ca2+ diffusion have provided important insight into the interplay between electrical activity, Ca2+ channel kinetics, and the location of granules and Ca2+ channels. By confronting simulations with statistical time-to-event (or survival) regression analysis of single granule exocytosis monitored with TIRF microscopy, a direct connection between location and rate of exocytosis can be obtained at the local, single-granule level. To get insight into whole-cell secretion, simplifications of the full spatiotemporal dynamics have shown to be highly helpful. Here, we provide an overview of recent approaches and results for quantitative analysis of Ca2+ regulated exocytosis of hormone-containing granules.


Assuntos
Interpretação Estatística de Dados , Células Endócrinas/fisiologia , Exocitose/fisiologia , Animais , Humanos , Modelos Teóricos
13.
Front Cell Neurosci ; 10: 202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630542

RESUMO

Hippocampal interneurons comprise a diverse family of inhibitory neurons that are critical for detailed information processing. Along with gamma-aminobutyric acid (GABA), interneurons secrete a myriad of neuroactive substances via secretory vesicles but the molecular composition and regulatory mechanisms remain largely unknown. In this study, we have carried out an immunohistofluorescence analysis to describe the molecular content of vesicles in distinct populations of hippocampal neurons. Our results indicate that phogrin, an integral protein of secretory vesicles in neuroendocrine cells, is highly enriched in parvalbumin-positive interneurons. Consistently, immunoelectron microscopy revealed phogrin staining in axon terminals of symmetrical synapses establishing inhibitory contacts with cell bodies of CA1 pyramidal neurons. Furthermore, phogrin is highly expressed in CA3 and dentate gyrus (DG) interneurons which are both positive for PV and neuropeptide Y. Surprisingly, chromogranin B a canonical large dense core vesicle marker, is excluded from inhibitory cells in the hippocampus but highly expressed in excitatory CA3 pyramidal neurons and DG granule cells. Our results provide the first evidence of phogrin expression in hippocampal interneurons and suggest the existence of molecularly distinct populations of secretory vesicles in different types of inhibitory neurons.

14.
Structure ; 24(12): 2198-2206, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27818102

RESUMO

The plasma membrane and the cell cortex are essential parts of the eukaryotic cell. The plasma membrane delimitates the cell and mediates communication with the outside. The cell cortex is the submembrane cytoskeleton shaping the cell and is able to reorganize for the passage of material. To study events at and near the plasma membrane, cryoelectron microscopy (cryo-EM) may be used. Most intact cells are too thick for direct cryo-EM imaging. Generating cell-free membrane patches could be a means to study features at the plasma membrane. Here we present an unroofing method, termed iMEM (isolation of membrane patches for cryo-EM) where the plasma membrane is isolated directly on an EM grid. The in situ isolation of membrane patches has several advantages: it is a one-step procedure providing a higher throughput than focused-ion beam cryomilling. It enables the time-precise control over biochemical events before cryofixation.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Animais , Tomografia com Microscopia Eletrônica/métodos , Células PC12 , Ratos
15.
Adv Pharmacol ; 68: 93-113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24054141

RESUMO

Catecholamines (CAs) and granin peptides are costored in dense-core vesicles within the chromaffin cells of the adrenal medulla and in other endocrine organs and neurons. Granins play a major functional and structural role in chromaffin cells but are ubiquitous proteins, which are present also in secretory cells of the nervous, endocrine, and immune systems, where they regulate a number of cellular functions. Furthermore, recent studies also demonstrate that granin-derived peptides can functionally interact with CA to modulate key physiological functions such as lipolysis and blood pressure. In this chapter, we will provide a brief update on the interaction between CA and granins at the cellular and organ levels. We will first discuss recent data on the regulation of exocytosis of CA and peptides from the chromaffin cells by the sympathetic nervous system with a specific reference to the prominent role played by splanchnic nerve-derived pituitary adenylate cyclase-activating peptide (PACAP). Secondly, we will discuss the role of granins in the storage and regulation of exocytosis in large dense-core vesicles. Finally, we will provide an up-to-date review of the roles played by two granin-derived peptides, the chromogranin A-derived peptide catestatin and the VGF-derived peptide TLQP-21, on lipolysis and obesity. In conclusion, the knowledge gathered from recent findings on the role played by proteins/peptides in the sympathetic/target cell synapses, discussed in this chapter, would contribute to and provide novel mechanistic support for an increased appreciation of the physiological role of CA in human pathophysiology.


Assuntos
Tecido Adiposo/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Cromograninas/metabolismo , Animais , Cromogranina A/fisiologia , Humanos , Lipólise , Neuropeptídeos/fisiologia , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Sistema Nervoso Simpático/fisiologia
16.
Mol Cell Endocrinol ; 376(1-2): 136-47, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23791846

RESUMO

Neuroendocrine cells contain small and large vesicles, but the functional significance of vesicle diameter is unclear. We studied unitary exocytic events of prolactin-containing vesicles in lactotrophs by monitoring discrete steps in membrane capacitance. In the presence of sphingosine, which recruits VAMP2 for SNARE complex formation, the frequency of transient and full fusion events increased. Vesicles with larger diameters proceeded to full fusion, but smaller vesicles remained entrapped in transient exocytosis. The diameter of vesicle dense cores released by full fusion exocytosis into the extracellular space was larger than the diameter of the remaining intracellular vesicles beneath the plasma membrane. Labeling with prolactin- and VAMP2-antibodies revealed a correlation between the diameters of colocalized prolactin- and VAMP2-positive structures. It is proposed that sphingosine-mediated facilitation of regulated exocytosis is not only related to the number of SNARE complexes per vesicle but also depends on the vesicle size, which may determine the transition between transient and full fusion exocytosis.


Assuntos
Membrana Celular/efeitos dos fármacos , Lactotrofos/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/ultraestrutura , Esfingosina/farmacologia , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Capacitância Elétrica , Exocitose/efeitos dos fármacos , Expressão Gênica , Lactotrofos/citologia , Lactotrofos/metabolismo , Masculino , Fusão de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Prolactina/genética , Prolactina/metabolismo , Ratos , Ratos Wistar , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-21423410

RESUMO

The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP) and a slowly releasable (SRP) pool are followed by sustained release, due to maturation, and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin, and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa