Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Protein Expr Purif ; : 106608, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293536

RESUMO

Currently, there is an urgent to develop safe and environmentally friendly alternatives to antibiotics for combating Vibrio parahaemolyticus. Endolysins are considered promising antibacterial agents due to their desirable range of action and ability to deal with antibiotic-resistant bacteria. While numerous Vibrio phages have been identified, the research on their endolysins is still in its infancy. In this study, a novel endolysin called LysVPB was cloned and expressed in Pichia pastoris. Phylogenetic analysis revealed that LysVPB bears little resemblance to other known endolysins, highlighting its unique nature. Homology modeling identified a putative calcium-binding site in LysVPB. The recombinant LysVPB achieved a lytic activity of 64.8 U/mL and had a molecular weight of approximately 17 kDa. LysVPB exhibited enhanced efficacy at pH 9.0, with 60% of its maximum activity observed within the broad pH range of 6.0-10.0. The catalytic efficiency of LysVPB peaked at 30 °C but significantly declined beyond 50 °C. Ba2+, Co2+, and Cu2+ showed inhibitory effects on the activity of LysVPB, while Ca2+ can boost it to 126.8%. Furthermore, LysVPB exhibited satisfactory efficacy against strains of V. parahaemolyticus. LysVPB is an innovative phage lysin with good characteristics that are specific to certain hosts. The modular nature of LysVPB allows for efficient domain exchange with alternative lysins as antimicrobial components and fusion with antimicrobial peptides. This opens up possibilities for engineering chimeric lysins in a broader range of target hosts with high antimicrobial effectiveness and strong activity under physiological conditions.

2.
Appl Microbiol Biotechnol ; 108(1): 366, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850320

RESUMO

This review gathers all, to the best of our current knowledge, known lysins, mainly bacteriophage-derived, that have demonstrated activity against Bacillus anthracis strains. B. anthracis is a spore-forming, toxin-producing bacteria, naturally dwelling in soil. It is best known as a potential biowarfare threat, an etiological agent of anthrax, and a severe zoonotic disease. Anthrax can be treated with antibiotics (ciprofloxacin, penicillin, doxycycline); however, their administration may take up even to 60 days, and different factors can compromise their effectiveness. Bacterial viruses, bacteriophages (phages), are natural enemies of bacteria and use their lytic enzymes, endolysins (lysins), to specifically kill bacterial cells. Harnessing the potential of lysins to combat bacterial infections holds promise for diminishing antibiotic usage and, consequently, addressing the escalating antibiotic resistance in bacteria. In this context, we list the lysins with the activity against B. anthracis, providing a summary of their lytic properties in vitro and the outcomes observed in animal models. Bacillus cereus strain ATCC 4342/RSVF1, a surrogate for B. anthracis, was also included as a target bacteria. KEY POINTS: • More than a dozen different B. anthracis lysins have been identified and studied. • They fall into three blocks regarding their amino acid sequence similarity and most of them are amidases. • Lysins could be used in treating B. anthracis infections.


Assuntos
Antraz , Antibacterianos , Bacillus anthracis , Endopeptidases , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/virologia , Antraz/tratamento farmacológico , Antraz/microbiologia , Animais , Endopeptidases/farmacologia , Endopeptidases/metabolismo , Endopeptidases/genética , Antibacterianos/farmacologia , Bacteriófagos/genética , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/virologia , Humanos , Fagos Bacilares/genética
3.
Appl Microbiol Biotechnol ; 108(1): 76, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194144

RESUMO

Bacillus anthracis is an etiological agent of anthrax, a severe zoonotic disease that can be transmitted to people and cause high mortalities. Bacteriophages and their lytic enzymes, endolysins, have potential therapeutic value in treating infections caused by this bacterium as alternatives or complements to antibiotic therapy. They can also be used to identify and detect B. anthracis. Endolysins of two B. anthracis Wbetavirus phages, J5a and F16Ba which were described by us recently, differ significantly from the best-known B. anthracis phage endolysin PlyG from Wbetavirus genus bacteriophage Gamma and a few other Wbetavirus genus phages. They are larger than PlyG (351 vs. 233 amino acid residues), contain a signal peptide at their N-termini, and, by prediction, have a different fold of cell binding domain suggesting different structural basis of cell epitope recognition. We purified in a soluble form the modified versions of these endolysins, designated by us LysJ and LysF, respectively, and depleted of signal peptides. Both modified endolysins could lyse the B. anthracis cell wall in zymogram assays. Their activity against the living cells of B. anthracis and other species of Bacillus genus was tested by spotting on the layers of bacteria in soft agar and by assessing the reduction of optical density of bacterial suspensions. Both methods proved the effectiveness of LysJ and LysF in killing the anthrax bacilli, although the results obtained by each method differed. Additionally, the lytic efficiency of both proteins was different, which apparently correlates with differences in their amino acid sequence. KEY POINTS: • LysJ and LysF are B. anthracis-targeting lysins differing from lysins studied so far • LysJ and LysF could be overproduced in E. coli in soluble and active forms • LysJ and LysF are active in killing cells of B. anthracis virulent strains.


Assuntos
Antraz , Bacillus anthracis , Bacillus , Bacteriófagos , Humanos , Escherichia coli
4.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000497

RESUMO

This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.


Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Sinorhizobium , Microbiologia do Solo , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Sinorhizobium/genética , Sinorhizobium/virologia , Sinorhizobium/fisiologia , Fases de Leitura Aberta
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982770

RESUMO

The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum ß-lactamases (ESBLs)- and AmpC ß-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (-20-40 °C) and pH (5-9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Filogenia , Bactérias/genética , Bacteriófagos/genética , Colífagos , Myoviridae , Genômica , Infecções por Escherichia coli/microbiologia
6.
Indian J Microbiol ; 63(2): 208-215, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325020

RESUMO

Bacteriophages have been proposed as an alternative therapy for the treatment of bacterial infections. This research aims to determine the lytic activity of bacteriophage-cocktails (BC) against carbapenem-resistant (CR-EC), ESBL-producer (EP-EC), and non-producer (NP-EC) E. coli isolates. Related resistance genes in 87 E. coli isolates were screened by PCR. The efficacies of BCs were determined by spot test and lytic zones were evaluated from fully-confluent to opaque. MOIs of the BCs were compared for fully-confluent and opaque lytic zones. BCs were also evaluated in terms of their biophysical characteristics including latency, burst size, pH and temperature stabilities. Among EP-EC, 96.9% of the isolates carry blaCTX-M, 25% of them blaSHV and 15.6% of them carry blaTEM. All CR-EC isolates carried blaOXA-48, but not blaKPC and blaNDM. CR-EC isolates were the least susceptible for the each of four BCs. MOIs for ENKO, SES and INTESTI-phage forming fully-confluent zone in E. coli isolates EC3 (NP-EC), EC8 (EP-EC) and EC27 (NP-EC), respectively were 10, 100 and 1, respectively. MOIs for ENKO, SES and INTESTI opaque zone in EC19 (EP-EC), EC10 (EP-EC), EC1(NP-EC), respectively were 0.01, 0.01, 0.1 PFU/CFU, respectively. The MOI for PYO-phage forming a semi-confluent zone in EC6 (NP-EC) isolate was 1 PFU/CFU. The phages were thermally stable and tolerant to a wide pH range. Comparison of MOIs according to lysis zone characteristics demonstrated that the activities of phages in phage cocktails vary depending on the characteristics of each bacterial host. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01074-9.

7.
Microb Pathog ; 165: 105494, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35314281

RESUMO

In this study, the genomes of two lytic bacteriophages, vB_EcoS-phiEc3 and vB_EcoS-phiEc4, were sequenced and characterized using bioinformatics approaches. Whole-genome analysis showed that both phages belonged to the Kagunavirus genus, Guernseyvirinae subfamily and Siphoviridae family. Moreover, their genomes had 45, 288 bp and 44,540 bp, and G + C content of 48.42% and 50.04%, respectively. The genome of vB_EcoS-phiEc3 harbored 80 protein coding sequences (CDSs), whereas vB_EcoS-phiEc4 harbored 75 CDSs. Among them, 50 CDSs in vB_EcoS-phiEc3 and 44 CDSs in vB_EcoS-phiEc4 were considered as functional genes. Their lytic activity against multidrug-resistant uropathogenic Escherichia coli (UPEC) strains, as well as the absence of antibiotic resistance genes, lysogenic and virulence genes, enable vB_EcoS-phiEc3 and vB_EcoS-phiEc4 as a safe therapy option against UPEC infections.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Siphoviridae , Escherichia coli Uropatogênica , Bacteriófagos/genética , Genoma Viral , Humanos , Siphoviridae/genética , Escherichia coli Uropatogênica/genética
8.
Biotechnol Bioeng ; 119(10): 2731-2742, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859248

RESUMO

With the increasingly serious drug resistance of Acinetobacter baumannii, there is an increasingly urgent need for new antibacterial drugs. Phage lysin PlyAB1 has a bactericidal effect on drug-resistant A. baumannii, which has the potential to replace antibiotics to fight infection caused by A. baumannii. However, its application is limited by its thermal stability and lytic activity. To solve these problems, molecular dynamics (MD) simulations combined with Hotspot wizard 3.0 were used to identify key residue sites affecting thermal stability, and evolutionary analysis combined with multiple sequence alignment was used to identify key residue sites affecting lytic activity. Four single-point variants with significantly increased thermal stability and four single-point variants with significantly lytic activity were obtained, respectively. Furthermore, by superimposing mutations, we obtained three double-point variants, G100Q/K69R, G100R/K69R, and G100K/K69R, with significantly improved thermal stability and improved lytic activity. At 45°C, the lytic activity and half-life of the optimal variant G100Q/K69R were 1.51- and 24-fold higher than those of the wild PlyAB1, respectively. These results deepen our understanding of the structure and function of phage lysin and contribute to the application of phage lysin in antibiotic substitution.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Mucoproteínas/farmacologia
9.
Fish Shellfish Immunol ; 127: 1079-1087, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870746

RESUMO

Lysozymes, acting as antimicrobial molecules, play a vital role in the host's innate immune response to pathogen infections. In the present study, a g-type lysozyme gene termed Tf-LyzG from roughskin sculpin, Trachidermus fasciatus was firstly reported. The deduced amino acid sequence of Tf-LyzG contained 188 residues and possessed conserved catalytic residues (Glu71, Asp84, and Asp95). Gene expression analysis revealed that Tf-LyzG was widely distributed in the tested eleven tissues with the highest expression in the gill and could be significantly induced post lipopolysaccharide (LPS) challenge. The lysozyme activity of the purified recombinant protein (rTf-LyzG) was found to be most active at pH 5.5 and 37 °C. rTf-LyzG exhibited a wide spectrum of potent bacteriolytic activity against four Gram-positive bacteria and six Gram-negative bacteria. It also displayed a high affinity to polysaccharides on bacteria surfaces including LPS, lipoteichoic acid (LTA), and peptidoglycan (PGN). rTf-LyzG was capable of binding and agglutinating all nine bacteria. Flow cytometry assay further revealed that rTf-LyzG could disrupt the membrane of Micrococcus lysodeikticus which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. In summary, these data indicate that Tf-LyzG is of great importance in the fish immune response against pathogens invasion.


Assuntos
Muramidase , Perciformes , Animais , Antibacterianos , Sequência de Bases , Gansos/genética , Gansos/metabolismo , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Filogenia
10.
Appl Microbiol Biotechnol ; 106(13-16): 5023-5033, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35790549

RESUMO

Mature lysostaphin (mLst) is a glycineglycine endopeptidase, capable of specifically cleaving penta-glycine crosslinker in the peptidoglycan of Staphylococcus aureus cell wall. It is a very effective therapeutic enzyme to kill the multidrug-resistant S. aureus often encountered in hospital acquired infections. Fusing cellulose binding domain (CBD) to mLst significantly reduced the insoluble expression of mLst in E. coli. Employing mLst-cleavable peptides as fusion linkers leaded to an effective self-cleavage expression that CBD and mLst could be completely cleaved off from the fusions during the expression process. The presence of residue linker fragment at N-terminus of the cleaved-off mLst strongly inhibited the cell lytic activity of the recovered recombinant mLst, and only ~ 50% of the wild-type mLst activity could be retained. Intact CBD-Lst fusions were obtained when uncleavable peptide linkers were employed. With CBD at N-terminus of mLst, the intact fusion completely lost its cell lytic activity but the dipeptidase activity still remained. In contrast, approximately 10% cell lytic activity of mLst still could be maintained for the fusion with CBD at C-terminus of mLst. KEY POINTS: • CBD fusion enhanced soluble expression of recombinant lysostaphin. • In vivo self-cleavage of fusion linkers by the expressed lysostaphin fusions. • Self-cleaved lysostaphin fusions retain most of dipeptidase but lose 50% cell lytic activity.


Assuntos
Dipeptidases , Staphylococcus aureus Resistente à Meticilina , Celulose , Escherichia coli/genética , Escherichia coli/metabolismo , Lisostafina/farmacologia , Tipagem de Sequências Multilocus , Peptidoglicano/metabolismo
11.
Microb Pathog ; 150: 104726, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33400986

RESUMO

This study was designed to evaluate the physicochemical properties of phage P22 in different pH and antibiotic levels as measured by growth kinetics, phage adsorption, and lytic activity. P22 was susceptible to acidic pHs and stable above pH 4. The latent period of P22 was 45 min and burst size was 34 phages/cell. The adsorption ability of phage to Salmonella Typhimurium was varied depending on the multiplicity of infections (MOIs). The latent period was reduced to 6.84, 4.02, and 1.72 h, respectively, on the levels of the host at 104, 106, and 108 CFU/ml. No significant differences in adsorption were observed between pH 4 and pH 7, but the lytic activities were significantly enhanced at the presence of ceftriaxone (CEA) and ciprofloxacin (CIP) at pH 7. Therefore, the phages combined with antibiotics can be a promising therapeutic tool to control antibiotic-resistant bacteria. This results provide a better understanding of host-phages interactions in different environmental conditions.


Assuntos
Bacteriófagos , Salmonella typhimurium , Adsorção , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia
12.
Amino Acids ; 53(5): 753-767, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33890127

RESUMO

Antimicrobial peptides (AMPs) are part of the innate immune system of many species. AMPs are short sequences rich in charged and non-polar residues. They act on the lipid phase of the plasma membrane without requiring membrane receptors. Polybia-MP1 (MP1), extracted from a native wasp, is a broad-spectrum bactericide, an inhibitor of cancer cell proliferation being non-hemolytic and non-cytotoxic. MP1 mechanism of action and its adsorption mode is not yet completely known. Its adsorption to lipid bilayer and lytic activity is most likely dependent on the ionization state of its two acidic and three basic residues and consequently on the bulk pH. Here we investigated the effect of bulk acidic (pH 5.5) and neutral pH (7.4) solution on the adsorption, insertion, and lytic activity of MP1 and its analog H-MP1 to anionic (7POPC:3POPG) model membrane. H-MP1 is a synthetic analog of MP1 with lysines replaced by histidines. Bulk pH changes could modulate this peptide efficiency. The combination of different experimental techniques and molecular dynamics (MD) simulations showed that the adsorption, insertion, and lytic activity of H-MP1 are highly sensitive to bulk pH in opposition to MP1. The atomistic details, provided by MD simulations, showed peptides contact their N-termini to the bilayer before the insertion and then lay parallel to the bilayer. Their hydrophobic faces inserted into the acyl chain phase disturb the lipid-packing.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Venenos de Vespas/química , Adsorção , Animais , Histidina/análise , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Vespas
13.
Int Microbiol ; 24(3): 399-413, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33956240

RESUMO

Bdellovibrios are predatory bacteria that invade other live Gram-negative bacterial cells for growth and reproduction. They have recently been considered as potential living antibiotics and biocontrol agents. In this study, the predatory activity and biocontrol potency of Bdellovibrio bacteriovorus strain SOIR-1 against Pantoea sp. strain BCCS and Xanthomonas campestris, two exo-biopolymer-producing phytopathogens, was evaluated. Plaque formation assays and lysis analysis in the broth co-cultures were used for the in vitro evaluation of bacteriolytic activity of strain SOIR-1. The in vivo biocontrol potential of strain SOIR-1 was evaluated by pathogenicity tests on the onion bulbs and potato tuber slices. The phytopathogens were also recovered from the infected plant tissues and confirmed using biochemical tests and PCR-based 16S rRNA gene sequence analysis. Typical bdellovibrios plaques were developed on the lawn cultures of Pantoea sp. BCCS and X. campestris. The killing rate of strain SOIR-1 toward Pantoea sp. BCCS and X. campestris was 84.3% and 76.3%, respectively. Exo-biopolymers attenuated the predation efficiency of strain SOIR-1 up to 10.2-18.2% (Pantoea sp. BCCS) and 12.2-17.3% (X. campestris). The strain SOIR-1 significantly reduced rotting symptoms in the onion bulbs caused by Pantoea sp. BCCS (69.0%) and potato tuber slices caused by X. campestris (73.1%). Although more field assessments are necessary, strain SOIR-1 has the preliminary potential as a biocontrol agent against phytopathogenic Pantoea sp. BCCS and X. campestris, especially in postharvest storage. Due to the particular physicochemical properties of evaluated exo-biopolymers, they can be used in the designing encapsulation systems for delivery of bdellovibrios.


Assuntos
Bdellovibrio bacteriovorus/fisiologia , Bdellovibrio bacteriovorus/patogenicidade , Agentes de Controle Biológico/farmacologia , Pantoea/efeitos dos fármacos , Pantoea/fisiologia , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/fisiologia , Antibiose , Biopolímeros/fisiologia , Técnicas de Cocultura/métodos , DNA Bacteriano , Interações Microbianas , RNA Ribossômico 16S
14.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830335

RESUMO

The food industry is still searching for novel solutions to effectively ensure the microbiological safety of food, especially fresh and minimally processed food products. Nowadays, the use of bacteriophages as potential biological control agents in microbiological food safety and preservation is a promising strategy. The aim of the study was the isolation and comprehensive characterization of novel bacteriophages with lytic activity against saprophytic bacterial microflora of minimally processed plant-based food products, such as mixed leaf salads. From 43 phages isolated from municipal sewage, four phages, namely Enterobacter phage KKP 3263, Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 have lytic activity against Enterobacter ludwigii KKP 3083, Citrobacter freundii KKP 3655, Enterobacter cloacae KKP 3082, and Serratia fonticola KKP 3084 bacterial strains, respectively. Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) identified Enterobacter phage KKP 3263 as an Autographiviridae, and Citrobacter phage KKP 3664, Enterobacter phage KKP 3262, and Serratia phage KKP 3264 as members of the Myoviridae family. Genome sequencing revealed that these phages have linear double-stranded DNA (dsDNA) with sizes of 39,418 bp (KKP 3263), 61,608 bp (KKP 3664), 84,075 bp (KKP 3262), and 148,182 bp (KKP 3264). No antibiotic resistance genes, virulence factors, integrase, recombinase, or repressors, which are the main markers of lysogenic viruses, were annotated in phage genomes. Serratia phage KKP 3264 showed the greatest growth inhibition of Serratia fonticola KKP 3084 strain. The use of MOI 1.0 caused an almost 5-fold decrease in the value of the specific growth rate coefficient. The phages retained their lytic activity in a wide range of temperatures (from -20 °C to 50 °C) and active acidity values (pH from 4 to 11). All phages retained at least 70% of lytic activity at 60 °C. At 80 °C, no lytic activity against tested bacterial strains was observed. Serratia phage KKP 3264 was the most resistant to chemical factors, by maintaining high lytic activity across a broader range of pH from 3 to 11. The results indicated that these phages could be a potential biological control agent against saprophytic bacterial microflora of minimally processed plant-based food products.


Assuntos
Bacteriófagos/genética , Citrobacter freundii/virologia , Enterobacter cloacae/virologia , Inocuidade dos Alimentos/métodos , Genoma Viral , Myoviridae/genética , Serratia/virologia , Bacteriólise/fisiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Agentes de Controle Biológico/classificação , Agentes de Controle Biológico/isolamento & purificação , DNA Viral/genética , Microbiologia de Alimentos/métodos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Humanos , Myoviridae/classificação , Myoviridae/isolamento & purificação , Filogenia , Esgotos/virologia , Verduras/microbiologia
15.
Naturwissenschaften ; 107(5): 44, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990796

RESUMO

The immune response can be costly. Studies in several arthropod species have indicated a trade-off between immunity and other life-history traits, including reproduction. In sexually dimorphic species in which females and males largely differ in their life history strategies and related energetic demands, we can expect to find sex differences in immune functions. Sex differences in immunity are well documented in vertebrates; however, we largely lack data from invertebrate systems. Lytic activity, the immune system's ability to lysate bacteria and viruses, has been widely used as a proxy for the strength of the immune response in several invertebrates. With this in mind, we used the burrowing wolf spider Allocosa senex to test differences in lytic activity between females and males. We also studied whether digging behavior affects the immune responses in this species. While females of A. senex construct simple refuges where they stay during the day, males construct deep burrows, which they donate to females after copulation. In accordance with our hypothesis, females showed higher lytic activity compared with males, and those males who dug showed higher levels of lytic activity than those that did not dig. Furthermore, male body condition and lytic activity did not correlate with burrow length, a trait under female choice in this species. Our results show sexual dimorphism in lytic activity responses, which are likely related to differences in life-history strategies and energetic requirements of each sex in A. senex spiders.


Assuntos
Comportamento de Nidação/fisiologia , Comportamento Sexual Animal/fisiologia , Aranhas/fisiologia , Animais , Feminino , Masculino , Fatores Sexuais , Aranhas/imunologia
16.
Fish Shellfish Immunol ; 96: 41-52, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31794842

RESUMO

In this study, we sequenced and characterized the goose-type lysozyme gene, termed as BsLysG, from the Chinese black sleeper (Bostrychus sinensis). The BsLysG encodes 196 amino acids and contains a soluble bacterial lytic transglycosylases domain, three catalytic residues (Glu72, Asp85 and Asp102) and the GLMQ motif (Gly97, Leu98, Met99 and Gln100). No signal peptide was observed in the BsLysG protein. The genomic DNA of BsLysG contains five exons and four introns. The sequence analyses showed that the BsLysG exhibits high similarity with LysG from other fishes. Phylogenetic analyses showed that the BsLysG is clustered together with its counterparts from other teleost fishes. The Real-time PCR analyses showed that the BsLysG was found to be ubiquitously expressed in ten examined organs in Chinese black sleeper, with predominant expression in spleen, followed by head kidney and peripheral blood. Expression analyses showed that the BsLysG was significantly upregulated in vivo after either pathogen Vibrio parahemolyticus infection or poly (I:C) challenge in peripheral blood, head kidney, liver and spleen organs. The purified recombinant BsLysG (rBsLysG) has optimal activity at 35 °C and pH 5.5. The rBsLysG exhibited antimicrobial activity against two Gram-positive bacteria (Micrococcus lysodeikticus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and V. parahemolyticus). The Scanning electron microscope (SEM) imaging analyses showed that the rBsLysG-treated V. parahemolyticus cells displayed morphological deformation. These results indicate that the BsLysG is involved in host immune defense against bacterial infection.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Muramidase/genética , Muramidase/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Muramidase/química , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária
17.
Fish Shellfish Immunol ; 84: 414-422, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316945

RESUMO

Multiple toxic and bioactive compounds produced by Alexandrium spp. cause adverse effects on bivalves, but these effects are frequently difficult to attribute to a single compound class. To disentangle the effect of neurotoxic vs lytic secondary metabolites, we exposed blue mussels to either a paralytic shellfish toxin (PST) producing Alexandrium spp. strain, or to an exclusively lytic compound (LC) producing strain, or a strain containing both compound classes, to evaluate the time dependent effects after 3 and 7 days of feeding. Tested parameters comprised signs of paralysis, feeding activity, and immune cell integrity (hemocyte numbers and viability; lysosomal membrane destabilization) and function (ROS production). Both compound classes caused paralysis and immune impairment. The only effect attributable exclusively to PST was increased phagocytic activity after 3 days and impaired feeding activity after 7 days, which curtailed toxin accumulation in digestive glands. Lysosomal membrane destabilization were more closely, but not exclusively, matched with LC exposure. Effects on circulating hemocyte integrity and immune related functions were mostly transient or remained stable within 7 days; except for increased lysosomal labialization and decreased extracellular ROS production when mussels were exposed to the toxin combination. M. edulis displays adaptive fitness traits to survive and maintain immune capacity upon prolonged exposure to environmentally relevant concentrations of PST and/or LC producing Alexandrium strains.


Assuntos
Dinoflagellida/fisiologia , Hemócitos/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Mytilus edulis/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hemócitos/metabolismo , Mytilus edulis/fisiologia
18.
Klin Lab Diagn ; 64(1): 57-64, 2019.
Artigo em Russo | MEDLINE | ID: mdl-30912887

RESUMO

Bacteriophage V32, a representative of bacterial viruses of the Myoviridae family Ounavirinae subfamily, is proposed for search and identification of E. coli O157 serogroup, including Shiga-toxin producing E. coli O157:H7 (STEC O157:H7), among cultures of enterobacteria from the primary seeding of the material studied. Phage genome containes a linear double-stranded DNA of 87875 base pairs with G/C-content of 38.9% and includes 132 open reading frames (ORF). In the genome, there are no determinants of antibiotic resistance, virulence genes of STEC and other well-known pathogroups of E. coli. It has been established that phage V32 has lytic activity against all studied cultures of E. coli O157 serogroup (n=183) isolated from people and farm animals in various regions of the Russian Federation, as well as in Japan and Italy. At the same time, the phage lyses only 6 of 182 strains (3.3%) of E. coli not belonging to the O157 serogroup and is not active against strains of other enterobacteria. That is, the phage has a high specificity. The use of bacteriophage V32 as a diagnostic tool is a highly efficient, fast, cheap and simple method for identifying E. coli serogroup O157, including the serotype E. coli O157: H7, in any bacteriological laboratory without special equipment and special training of performers.


Assuntos
Bacteriófagos , Escherichia coli O157/isolamento & purificação , Animais , Escherichia coli O157/virologia , Humanos , Sorogrupo
19.
Ann Clin Microbiol Antimicrob ; 16(1): 66, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938899

RESUMO

BACKGROUND: The emergence of antibiotic-resistant bacteria can cause serious clinical and public health problems. This study describes the possibility of using bacteriophages as an alternative agent to control multidrug-resistant Salmonella Typhimurium. METHODS: The potential lytic bacteriophages (P22-B1, P22, PBST10, PBST13, PBST32, and PBST 35) were characterized by morphological property, heat and pH stability, optimum multiplicity of infection (MOI), and lytic activity against S. Typhimurium KCCM 40253, S. Typhimurium ATCC 19585, ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and S. Typhimurium CCARM 8009. RESULTS: P22-B1 and P22 belong to Podoviridae family and PBST10, PBST13, PBST32, and PBST 35 show a typical structure with polyhedral head and long tail, belonging to Siphoviridae family. Salmonella bacteriophages were highly stable at the temperatures (< 60 °C) and pHs (5.0-11.0). The reduction rates of host cells were increased at the MOI-dependent manner, showing the highest reduction rate at MOI of 10. The host cells were most effectively reduced by P22, while P22-B1 showed the least lytic activity. The ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 were resistant to ciprofloxacin, levofloxacin, norfloxacin, and tetracycline. P22 showed the highest lytic activity against S. Typhimurium KCCM 40253 (> 5 log reduction), followed by S. Typhimurium ATCC 19585 (4 log reduction) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585 (4 log reduction). CONCLUSION: The results would provide vital insights into the application of lytic bacteriophages as an alternative therapeutics for the control of multidrug-resistant pathogens.


Assuntos
Bacteriófagos , Agentes de Controle Biológico , Farmacorresistência Bacteriana Múltipla , Salmonella typhimurium/virologia , Antibacterianos/farmacologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Ciprofloxacina/farmacologia , Interações Hospedeiro-Patógeno , Temperatura Alta , Concentração de Íons de Hidrogênio , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Norfloxacino/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Tetraciclina/farmacologia
20.
Amino Acids ; 48(6): 1433-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26920749

RESUMO

We investigate the effect of the N-terminus modification of the L1A, a synthetic octadecapeptide, on its helical content, affinity and lytic action in model membranes and on its hemolytic and antibacterial activities. L1A and its acetylated analog displayed a selective antibacterial activity to Gram-negative bacteria without being hemolytic. The covalently linked 2-aminobezoic acid to the N-terminus impaired the antibacterial efficacy and increased hemolysis. Despite their lower net charge (+2), N-terminus modifications resulted in enhanced affinity and improved lytic efficiency in anionic vesicles. The analogs also showed higher helical content and consequently higher amphipathicity in these vesicles. The conformational analysis by molecular dynamics simulations in 30 % of TFE/water showed that the hydrophobic faces of the peptides are in close contact with CF3 groups of TFE while the hydrophilic faces with water molecules. Due to the loss of the amino charge, the N-termini of the analogs are buried in TFE molecules. The analysis of the pair distribution functions, obtained for the center of mass of the charged groups, has evidenced that the state of the N-terminus has influenced the possibility of different ion-pairing. The higher complexity of the bacterial cells compared with anionic vesicles hampers to establish correlations structure-function for the analogs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Bactérias/crescimento & desenvolvimento , Acetilação , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa