Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38764325

RESUMO

Currently, the clinical treatment of bone cancer pain (BCP) is mainly related to its pathogenesis. The aim of the present study was to elucidate the potential role of N6-methyladenosine (m6A) in BCP in the spinal cord dorsal root ganglia (DRG) of BCP rats and its specific regulatory mechanism in N-methyl-d-aspartate receptor subunit 2B (NR2B). A rat model of BCP was constructed by tibial injection of Walker256 cells, and ALKBH5 and NR2B expression in the spinal cord DRG was detected. ALKBH5 was silenced or overexpressed in PC12 cells to verify the regulatory effect of ALKBH5 on NR2B. The specific mechanism underlying the interaction between ALKBH5 and NR2B was investigated using methylated RNA immunoprecipitation and dual-luciferase reporter gene assays. The results showed increased expression of m6A, decreased expression of ALKBH5, and increased expression of NR2B in the DRG of the BCP rat model. Overexpression of ALKBH5 inhibited NR2B expression, whereas interference with ALKBH5 caused an increase in NR2B expression. In NR2B, interference with ALKBH5 caused an increase in m6A modification, which caused an increase in NR2B. Taken together, ALKBH5 affected the expression of NR2B by influencing the stability of the m6A modification site of central NR2B, revealing that ALKBH5 is a therapeutic target for BCP.

2.
FASEB J ; 36(3): e22147, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104016

RESUMO

Diabetes mellitus (DM) and osteoporosis are two common diseases that may develop as a cause-and-effect relationship since the incidence of osteoporotic fractures is significantly increased in DM patients. However, the pathophysiology of diabetic osteoporosis is yet to be clearly understood. Iron overload has been reported to lead to bone loss and closely related to osteoporosis. In this study, we hypothesized that high glucose and high fat (HGHF) may induce osteoblastic ferroptosis for the pathogenesis of diabetic osteoporosis and explored the possible molecular mechanisms behind. Using the diabetic rat model established by HGHF feeding with a subsequent intraperitoneal injection of a single low dose of streptozocin, we found that the serum ferritin level (a biomarker for body iron store) was significantly elevated in HGHF-fed rats and the expression of SLC7A11 and GPX4 (inhibitory marker proteins for ferroptosis) was markedly attenuated in the bone tissue of the rats with diabetic bone loss as compared to the normal rats. In an osteoblast cell model, treatment of pre-osteoblastic MC3T3-E1 cells with high glucose and palmitic acid (HGPA) not only suppressed osteoblast differentiation and mineralization but also triggered ferroptosis-related osteoblastic cell death. m6 A-seq revealed that m6 A methylation on ASK1 was 80.9-fold higher in HGPA-treated cells. The expression of p-ASK1 and p-p38 was also significantly elevated in the HGPA-treated cells. Knockout of METTL3 (methyltransferase-like 3), one of the major m6 A methyltransferases, in MC3T3-E1 cells not only abrogated HGPA-induced activation of ASK1-p38 signaling pathway but also attenuated the level of ferroptosis. Therefore, HGHF-induced ferroptosis in osteoblasts may be the main cause of osteoporosis in DM via activation of METTL3/ASK1-p38 signaling pathway, and inhibition of ferroptosis in osteoblasts may provide a potential therapeutic strategy for diabetic osteoporosis.


Assuntos
Diabetes Mellitus/metabolismo , Ferroptose/fisiologia , Glucose/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Metiltransferases/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
3.
Tuberculosis (Edinb) ; 146: 102502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458103

RESUMO

Mycobacterium tuberculosis (Mtb)-infected macrophages aggravated the development of pulmonary tuberculosis, but its detailed molecular mechanisms are still largely unknown. Here, the mouse primary peritoneal macrophages were infected with the attenuated strain of Mtb H37Ra, and we firstly verified that targeting a novel METTL3/N6-Methyladenosine (m6A)/LncRNA MALAT1/miR-125b/TLR4 axis was effective to suppress pyroptotic cell death in the Mtb-infected macrophages. Specifically, through performing Real-Time qPCR and Western Blot analysis, we validated that METTL3, LncRNA MALAT1 and TLR4 were elevated, whereas miR-125b and the anti-oxidant agents (Nrf2 and HO-1) were downregulated in Mtb-infected mouse macrophages. In addition, functional experiments confirmed that both ROS scavenger NAC and METTL3-ablation downregulated NLRP3, GSDMD-C, cleaved Caspase-1 and ASC to restrain pyroptotic cell death and decreased the expression levels of IL-1ß, IL-18, IL-6 and TNF-α to restrain inflammatory cytokines expression in Mtb-infected macrophages. Next, METTL3-ablation induced m6A-demethylation and instability in LncRNA MALAT1, and low-expressed LncRNA MALAT1 caused TLR4 downregulation through sponging miR-125b, resulting in the inactivation of NLRP3 inflammasome. Finally, silencing of METTL3-induced protective effects in Mtb-infected macrophages were all abrogated by overexpressing LncRNA MALAT1 and downregulating miR-125b. Thus, we concluded that targeting METTL3-mediated m6A modifications suppressed Mtb-induced pyroptotic cell death in mouse macrophages, and the downstream LncRNA MALAT1/miR-125b/TLR4 axis played critical role in this process.


Assuntos
Macrófagos , MicroRNAs , Mycobacterium tuberculosis , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Longo não Codificante , Animais , Camundongos , Adenina/análogos & derivados , Inflamação/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
4.
Mol Med Rep ; 28(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37449516

RESUMO

N6-methyl-adenosine (m6a) is involved in the occurrence and development of various diseases such as autogenic immune disease and tumors. Methyltransferases regulate primary (pri)-microRNA (miRNA/miR) processing by mediating m6a modifications, consequently affecting pathological processes including immune-related diseases by regulating both innate and adaptive immune cells. However, the roles of m6a on the biological functions of bone marrow mesenchymal stem cells (BMSCs) remain to be elucidated. The relative expression levels of methyltransferase-like 14 (METTL14) and other methyltransferases, demethylases, and miR-873 in bone samples from patients with osteoporosis and from normal individuals were measured by reverse transcription-quantitative PCR. Cell Counting Kit-8 assay was used to examine the proliferation of BMSCs. Co-immunoprecipitation (Co-IP) was used to investigate the binding of METTL14 to DiGeorge syndrome critical region 8 (DGCR8). RNA immunoprecipitation (RIP) was used to examine the binding of METTL14 to pri-miR-873. METTL14 and m6a modifications were highly detected in patients with osteoporosis compared with the controls. Co-IP results indicated that silencing of METTL14 reduced METTL14 and m6a modification levels in BMSCs. Downregulation of METTL14 significantly promoted the proliferation of BMSCs. RIP results suggested that METTL14/m6a methylation modification promoted the processing of pri-miR-873 by binding to DGCR8 in BMSCs. Furthermore, overexpression of miR-873 inhibited the proliferation of BMSCs. The results also showed that miR-873 mimics significantly inhibited the proliferation in small interfering (si)-METTL14 transfected BMSCs; however, miR-873 inhibitors markedly promoted the proliferation of si-METTL14 transfected BMSCs. METTL14 and m6a modifications were upregulated in osteoporosis samples. METTL14 promoted the processing of pri-miR-873 into mature miR-873 by regulating m6a modification. Furthermore, overexpression of miR-873 significantly inhibited the proliferation of BMSCs. Therefore, the METTL14/m6a/miR-873 axis may be a potential target for the treatment of osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Humanos , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular/genética , Osteogênese/genética , Osteoporose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética , Células da Medula Óssea , Metiltransferases/genética , Metiltransferases/metabolismo
5.
Adv Sci (Weinh) ; 10(26): e2301538, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401155

RESUMO

Abnormal resumption of meiosis and decreased oocyte quality are hallmarks of maternal aging. Transcriptional silencing makes translational control an urgent task during meiosis resumption in maternal aging. However, insights into aging-related translational characteristics and underlying mechanisms are limited. Here, using multi-omics analysis of oocytes, it is found that translatomics during aging is related to changes in the proteome and reveals decreased translational efficiency with aging phenotypes in mouse oocytes. Translational efficiency decrease is associated with the N6-methyladenosine (m6A) modification of transcripts. It is further clarified that m6A reader YTHDF3 is significantly decreased in aged oocytes, inhibiting oocyte meiotic maturation. YTHDF3 intervention perturbs the translatome of oocytes and suppress the translational efficiency of aging-associated maternal factors, such as Hells, to affect the oocyte maturation. Moreover, the translational landscape is profiled in human oocyte aging, and the similar translational changes of epigenetic modifications regulators between human and mice oocyte aging are observed. In particular, due to the translational silence of YTHDF3 in human oocytes, translation activity is not associated with m6A modification, but alternative splicing factor SRSF6. Together, the findings profile the specific translational landscapes during oocyte aging in mice and humans, and uncover non-conservative regulators on translation control in meiosis resumption and maternal aging.


Assuntos
Multiômica , Oócitos , Humanos , Camundongos , Animais , Idoso , Meiose/genética , Adenosina , Fatores de Processamento de Serina-Arginina , Fosfoproteínas
6.
Cancer Lett ; 571: 216336, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562671

RESUMO

The efficacy of HCC (hepatocellular carcinoma) immunotherapy is hindered by the limited reactivity and short duration of tumor-infiltrating T cells. These deficiencies may be ascribed to the proliferative ability of T cells. The primary objective of this study was to identify the key factor regulating tumor-infiltrating lymphocytes (TIL) proliferation within the HCC microenvironment. Through the utilization of tissue-infiltrated T cell proteomics and fraction proteomics, we analyzed the differential proteins in T cells among HCC, liver fibrosis, and hemangioma (serving as controls) groups. Additionally, we examined the differential regulatory TFs of T cells between the HCC and VH (volunteer healthy, as a control) groups. Using cyTOF and flow cytometry technologies, as well as generating CD8+ T-specific BMI1 knockout mice, we confirmed that BMI1 controls CD127+KLRG1+ memory cell differentiation. Through RNA-seq and MeRIP-seq, we verified that BMI1 regulates TCF1 expression independently of its classical function. Furthermore, by conducting Tyramide signal amplification (TSA) IHC analysis, employing a hydrodynamic mouse HCC model, and utilizing liver-specific nanoparticle targeting therapy, we demonstrated that BMI1 in HCC influences the proliferation of infiltrating CD8+T. BMI1 inhibition promotes effector T cell differentiation while suppressing memory T cell differentiation. Moreover, liver-specific BMI1 knockdown proves beneficial in ameliorating T cell dysfunction and decelerating HCC progression. Our research group has pioneered the exploration of the proteomics of HCC-infiltrated T cells, shedding light on the pivotal role of BMI1 in controlling CD127+KLRG1+ memory CD8+ T cell differentiation, which serves as the cornerstone for achieving immunotherapy efficacy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Neoplasias Hepáticas/patologia , Células T de Memória , Camundongos Knockout , Microambiente Tumoral , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética
7.
J Cancer ; 13(8): 2662-2672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711823

RESUMO

Background: Long non-coding RNA (lncRNA) regulates the tumorigenesis as well as the development of lung adenocarcinoma (LUAD), which is one of the high-mortality cancers. We explored the influence of lncRNA AC098934 on the malignant biological behavior of LUAD and potential underlying molecular mechanisms. Methods: The expression level of AC098934 in either the LUAD or the normal tissues was identified in the TCGA database. Two AC098934 knockdown siRNAs were infected into cells of LUAD, including A549 as well as H1299 cells, using the lentivirus. Real-time Quantitative polymerase chain reaction (QPCR) helped to determine the knockdown efficiency of AC098934. CCK-8, cell cloning, wound healing combined with transwell assays tested the role of AC098934 in the cell proliferation, migration as well as the invasion. Tumor formation experiment in nude mice subcutaneously confirmed the promoting effect of AC098934 in vivo. In addition, combinations of METTL3 and AC098934, as well as m6A and AC098934 were identified through the RIP assay. Results: Compared to the normal tissues, AC098934 was more highly expressed in LUAD tissues. After AC098934 was knocked down by siRNA, the proliferation, invasion, migration as well as tumorigenesis abilities of both A549 and H1299 cells were reduced. Mechanistically, AC098934 could bind to the m6A antibody and METTL3 protein. METTL3 overexpression promoted the m6A modification on AC098934, thereby increasing the interaction of m6A modification. Conclusion: The highly expressed lncRNA AC098934 in LUAD facilitates the cell proliferation as well as invasion either in vitro or in vivo. METTL3 binds, furthermore, modulates the m6A modification of AC098934. Our research revealed a new molecular mechanism, through which AC098934 promoted the malignant behavior of LUAD tumors under the m6A modification induced by METTL3. This indicates that AC098934 is possible to be a promising biomarker as well as a therapeutic target for the patients with LUAD.

8.
Aging (Albany NY) ; 14(1): 330-353, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979500

RESUMO

BACKGROUND: Studies have shown that the RNA N6-methyladenosine (m6A) modification patterns are extensively involved in the development of multiple tumors. However, the association between the m6A regulator expression patterns and the sarcoma tumor immune microenvironment (TIME) remains unclear. METHODS: We systematically evaluated the m6A regulator expression patterns in patients with sarcoma based on known 23 m6A regulators. Different m6A regulator expression patterns were analyzed using gene set variation analysis and a single-sample gene set enrichment analysis algorithm. According to the results of consensus clustering, we classified the patients into four different clusters. Next, we subjected the four clusters to differential genetic analysis and established m6A-related differentially expressed genes (DEGs). We then calculated the m6A-related DEGs score and constructed the m6A-related gene signature, named m6A score. Finally, the 259 sarcoma samples were divided into high- and low-m6A score groups. We further evaluated the TIME landscape between the high- and low-m6A score groups. RESULTS: We identified four different m6A modification clusters and found that each cluster had unique metabolic and immunological characteristics. Based on the 19 prognosis-related DEGs, we calculated the principal component analysis scores for each patient with sarcoma and classified them into high- and low-m6A score groups. CONCLUSIONS: The m6A regulator expression patterns and complexity of the sarcoma TIME landscape are closely related to each other. Systematic evaluation of m6A regulator expression patterns and m6A scores in patients with sarcoma will enhance our understanding of TIME characteristics.


Assuntos
Adenosina/análogos & derivados , Biomarcadores Tumorais , Proteínas de Neoplasias/metabolismo , Sarcoma/metabolismo , Microambiente Tumoral/imunologia , Adenosina/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Genômica , Humanos , Metilação , Proteínas de Neoplasias/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa