Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Diabetes Obes Metab ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318059

RESUMO

AIM: Many patients with type 1 diabetes mellitus (T1DM) met the histological criteria for non-alcoholic steatohepatitis (NASH), which leads to cardiovascular disease morbidity and mortality. Matrix metalloproteinase-14 (MMP-14) is involved in cardiovascular disease and atherosclerosis. OBJECTIVES: To assess the impact of oral dipeptidyl peptidase-4 inhibitor, vildagliptin, as adjunctive therapy on NASH in adolescents with T1DM and its effect on glycaemic control, MMP-14 levels and carotid intima media thickness (CIMT). METHODS: Sixty adolescents with T1DM and NASH were randomly assigned to receive oral vildagliptin (50 mg once daily) for 6 months or not. Glycated haemoglobin, lipid profile, hepatic steatosis index, triglyceride glucose (TyG) index and MMP-14 levels were assessed. Transient elastography with controlled attenuation parameter (CAP) was performed together with measuring CIMT. RESULTS: By transient elastography, 12 (20%) patients with T1DM with NASH had elevated liver stiffness ≥7 kPa (F2 stage or higher). Baseline MMP-14 was positively correlated to insulin dose (p = 0.016), triglycerides and TyG index, CIMT, liver stiffness and CAP levels among the studied patients (p < 0.001 for all). After 6 months, patients with T1DM on vildagliptin therapy had significantly lower glycated haemoglobin, lipid profile, hepatic steatosis index and TyG index, as well as MMP-14 (p < 0.001). CIMT, liver stiffness and CAP were significantly decreased post-therapy compared with baseline levels and compared with the control group (p < 0.001). Vildagliptin was safe and well-tolerated. CONCLUSIONS: Administration of vildagliptin for adolescents with T1DM and NASH improved glycaemic control, dyslipidaemia and MMP-14 levels and decreased liver stiffness and CIMT; hence, reducing subclinical atherosclerosis and disease progression.

2.
BMC Cancer ; 23(1): 142, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765296

RESUMO

BACKGROUND: Extranodal extension (ENE) is an adverse prognostic factor for oral squamous cell carcinoma (OSCC), and patients with OSCC along with ENE require neck dissection. In this study, we developed a novel ENE histology-based pathological predictor using MMP14 expression patterns in small biopsy specimens. METHODS: A total of 71 surgically resected tissue, 64 dissected lymph node (LN), and 46 biopsy specimens were collected from 71 patients with OSCC. Immunohistochemical analyses of total MMP14 expression in the tumour nest and cancer-associated fibroblasts (CAFs) were performed using the MMP14 co-scoring system (high- or low-risk). The association analysis of MMP14 expression in metastatic LNs was performed with respect to the presence and absence of ENE. Clinicopathological analyses and multivariate examinations were performed to assess the risks of metastasis and ENE presence. The predictive value of ENE and the impact of ENE and MMP14 expression on 5-year overall survival were examined. RESULTS: High-risk MMP14 expression was detected in metastatic LN specimens with ENE. MMP14 expression in tumour nests and CAFs and its overexpression at the tumour-stromal interface significantly correlated with the presence of ENE. The MMP14 co-scoring system was an independent risk predictor for ENE, with sensitivity, specificity, and accuracy of over 80% in biopsy samples; patients with a high risk in the MMP14 co-scoring system had significantly worse prognoses in both resections and biopsies. CONCLUSION: The MMP14 co-scoring system accurately predicted ENE presence and poor prognosis via immunohistochemical evaluation of small biopsies. This system is a simple, accurate, and inexpensive immunohistochemical approach that can be used in routine pathological diagnosis for effective treatment planning.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/cirurgia , Neoplasias Bucais/patologia , Estudos Retrospectivos , Extensão Extranodal/patologia , Metaloproteinase 14 da Matriz , Prognóstico , Linfonodos/patologia , Neoplasias de Cabeça e Pescoço/patologia , Estadiamento de Neoplasias
3.
Arterioscler Thromb Vasc Biol ; 42(10): 1244-1253, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073351

RESUMO

BACKGROUND: MT1-MMP (membrane-type 1 matrix metalloproteinase, MMP-14) is a transmembrane-anchored protein with an extracellular proteinase domain and a cytoplasmic tail devoid of proteolytic functions but capable of mediating intracellular signaling that regulates tissue homeostasis. MT1-MMP extracellular proteolytic activity has been shown to regulate pathological remodeling in aortic aneurysm and atherosclerosis. However, the role of the nonproteolytic intracellular domain of MT1-MMP in vascular remodeling in abdominal aortic aneurysms (AAA) is unknown. METHODS: We generated a mutant mouse that harbors a point mutation (Y573D) in the MT1-MMP cytoplasmic domain that abrogates the MT1-MMP signaling function without affecting its proteolytic activity. These mice and their control wild-type littermates were subjected to experimental AAA modeled by angiotensin II infusion combined with PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression and high-cholesterol feeding. RESULTS: The mutant mice developed more severe AAA than the control mice, with concomitant generation of intraaneurysmal atherosclerotic lesions and dramatically increased macrophage infiltration and elastin degradation. Aortic lesion-associated and bone marrow-derived macrophages from the mutant mice exhibited an enhanced inflammatory state and expressed elevated levels of proinflammatory Netrin-1, a protein previously demonstrated to promote both atherosclerosis and AAA. CONCLUSIONS: Our findings show that the cytoplasmic domain of MT1-MMP safeguards from AAA and atherosclerotic plaque development through a proteolysis-independent signaling mechanism associated with Netrin-1 expression. This unexpected function of MT1-MMP unveils a novel mechanism of synchronous onset of AAA and atherogenesis and highlights its importance in the control of vascular wall homeostasis.


Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Angiotensina II , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aterosclerose/genética , Colesterol , Elastina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Netrina-1 , Pró-Proteína Convertase 9 , Subtilisinas
4.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090092

RESUMO

Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.


Assuntos
Movimento Celular , Colágeno/metabolismo , Leucócitos Mononucleares/virologia , Metaloproteinase 14 da Matriz/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Animais , Membrana Celular/metabolismo , Galinhas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genótipo , Proteína HN/genética , Proteína HN/metabolismo , Interações Hospedeiro-Patógeno , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Sistema de Sinalização das MAP Quinases , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Replicação Viral
5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361079

RESUMO

The liver has a most indispensable role in glucose and lipid metabolism where we see some of the most serious worldwide health problems. The serine protease prostasin (PRSS8) cleaves toll-like receptor 4 (TLR4) and regulates hepatic insulin sensitivity under PRSS8 knockout condition. However, liver substrate proteins of PRSS8 other than TLR4 and the effect to glucose and lipid metabolism remain unclarified with hepatic elevation of PRSS8 expression. Here we show that high-fat-diet-fed liver-specific PRSS8 transgenic mice improved glucose tolerance and hepatic steatosis independent of body weight. PRSS8 amplified extracellular signal-regulated kinase phosphorylation associated with matrix metalloproteinase 14 activation in vivo and in vitro. Moreover, in humans, serum PRSS8 levels reduced more in type 2 diabetes mellitus (T2DM) patients than healthy controls and were lower in T2DM patients with increased maximum carotid artery intima media thickness (>1.1 mm). These results identify the regulatory mechanisms of PRSS8 overexpression over glucose and lipid metabolism, as well as excessive hepatic fat storage.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/patologia , Serina Endopeptidases/metabolismo , Animais , Peso Corporal , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina Endopeptidases/genética
6.
Am J Respir Cell Mol Biol ; 57(2): 238-247, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28362108

RESUMO

Alpha-1 antitrypsin (AAT) deficiency-associated emphysema is largely attributed to insufficient inhibition of neutrophil elastase released from neutrophils. Correcting AAT levels using augmentation therapy only slows disease progression, and that suggests a more complex process of lung destruction. Because alveolar macrophages (Mɸ) express AAT, we propose that the expression and intracellular accumulation of mutated Z-AAT (the most common mutation) compromises Mɸ function and contributes to emphysema development. Extracellular matrix (ECM) degradation is a hallmark of emphysema pathology. In this study, Mɸ from individuals with Z-AAT (Z-Mɸ) have greater proteolytic activity on ECM than do normal Mɸ. This abnormal Z-Mɸ activity is not abrogated by supplementation with exogenous AAT and is likely the result of cellular dysfunction induced by intracellular accumulation of Z-AAT. Using pharmacologic inhibitors, we show that several classes of proteases are involved in matrix degradation by Z-Mɸ. Importantly, compared with normal Mɸ, the membrane-bound serine protease, matriptase, is present in Z-Mɸ at higher levels and contributes to their proteolytic activity on ECM. In addition, we identified matrix metalloproteinase (MMP)-14, a membrane-anchored metalloproteinase, as a novel substrate for matriptase, and showed that matriptase regulates the levels of MMP-14 on the cell surface. Thus, high levels of matriptase may contribute to increased ECM degradation by Z-Mɸ, both directly and through MMP-14 activation. In summary, the expression of Z-AAT in Mɸ confers increased proteolytic activity on ECM. This proteolytic activity is not rescued by exogenous AAT supplementation and could thus contribute to augmentation resistance in AAT deficiency-associated emphysema.


Assuntos
Macrófagos Alveolares/enzimologia , Serina Endopeptidases/fisiologia , Deficiência de alfa 1-Antitripsina/fisiopatologia , alfa 1-Antitripsina/genética , Adulto , Idoso , Células Cultivadas , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Indução Enzimática , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Metaloproteinase 14 da Matriz/metabolismo , Pessoa de Meia-Idade , Monócitos/patologia , Mutação , Enfisema Pulmonar/enzimologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/fisiopatologia , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Regulação para Cima , Adulto Jovem , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacologia , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/genética
7.
Biochim Biophys Acta ; 1852(9): 1743-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26047679

RESUMO

Matrix metalloproteinase 14 (MMP-14) is a membrane-anchored MMP crucial for tumorigenesis and aggressiveness, and is highly expressed in neuroblastoma (NB), the most common extracranial solid tumor in childhood. Recent evidence shows the emerging roles of endogenous promoter-targeting microRNAs (miRNAs) in regulating gene transcription. However, the roles of miRNAs in the transcription of MMP-14 still remain largely unknown. In this study, through mining computational algorithm program and Argonaute-chromosome interaction dataset, we identified one binding site of miRNA-584-5p (miR-584-5p) within the MMP-14 promoter. In NB tissues, miR-584-5p was under-expressed and inversely correlated with MMP-14 expression, and was an independent prognostic factor for favorable outcome of patients. miR-584-5p precursor attenuated the expression of MMP-14 in a Dicer-dependent manner, resulting in decreased levels of vascular endothelial growth factor, in cultured NB cell lines. In addition, miR-584-5p suppressed the promoter activity of MMP-14, and mutation of miR-584-5p binding site abolished these effects. Mechanistically, miR-584-5p recruited Argonaute 2 to facilitate the enrichment of enhancer of zeste homolog 2, histone H3 lysine 27 trimethylation, and histone H3 lysine 9 dimethylation on MMP-14 promoter in NB cells, which was abolished by repressing the miR-584-5p-promoter interaction. Gain- and loss-of-function studies demonstrated that miR-584-5p suppressed the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Moreover, restoration of MMP-14 expression rescued the NB cells from changes in these biological features. Taken together, these results indicate that promoter-targeting miR-584-5p exerts tumor suppressive functions in NB through repressing the transcription of MMP-14.

8.
Pediatr Int ; 58(2): 161-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26541120

RESUMO

We herein report the rare case of a 4-year-5-month-old boy who presented with primary renal neuroblastoma. The patient developed repeated lung and liver metastatic recurrences, but, following a combination of chemotherapy, radiation therapy and aggressive surgical resection, the patient is now in remission. To investigate the pathogenesis of lung metastasis, immunohistochemistry was performed for matrix metalloproteinase-9 and -14 (MMP-9 and MMP-14), molecular markers of invasion, metastasis and angiogenesis in neuroblastoma. In the present case, MMP-9 expression was not observed, but MMP-14 expression was detected in the primary lesion and was more highly expressed in the metastatic lesion compared with the primary one. Given the MMP-14 staining in other cases, expression of MMP-14 may be associated with the aggressiveness of the tumor. This suggests that selected clones with high MMP-14 expression in the primary tumor might metastasize and form MMP-14-rich lesions.


Assuntos
Neoplasias Renais/patologia , Neoplasias Pulmonares/secundário , Metaloproteinase 14 da Matriz/metabolismo , Neuroblastoma/patologia , Pré-Escolar , Humanos , Imuno-Histoquímica , Masculino , Recidiva Local de Neoplasia , Nefrectomia , Neuroblastoma/metabolismo
9.
Tumour Biol ; 36(11): 8609-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26040767

RESUMO

Although matrix metalloproteinase 14 (MMP-14) has been shown to play a substantial role in the carcinogenesis of some types of cancer, its involvement in the pathogenesis of nasopharyngeal carcinoma (NPC) has not been reported. Here, we analyzed MMP-14 levels in the NPC specimens from patients and compared with the paired normal nasopharynx (NNP) tissues. We found that NPC had significantly higher messenger RNA (mRNA) and protein levels of MMP-14. Moreover, higher levels of MMP-14 correlated with more advanced status of clinical stage and lymphatic metastasis. In vitro, MMP-14 levels determined the potential of invasiveness of NPC cells, possibly through induction of EMT-associated genes. Our data thus highlight MMP-14 as a novel therapeutic target for NPC.


Assuntos
Transição Epitelial-Mesenquimal/genética , Metástase Linfática/genética , Metaloproteinase 14 da Matriz/biossíntese , Neoplasias Nasofaríngeas/genética , Carcinogênese/genética , Carcinoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/patologia , Metaloproteinase 14 da Matriz/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica/genética , Estadiamento de Neoplasias
10.
Molecules ; 20(7): 12076-92, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26147581

RESUMO

Membrane type-1 matrix metalloproteinase (MT1-MMP or MMP-14) plays an important role in adverse cardiac remodelling. Here, we aimed to develop radiolabeled activatable cell penetrating peptides (ACPP) sensitive to MT1-MMP for the detection of elevated MT1-MMP levels in adverse cardiac remodelling. Three ACPP analogs were synthesized and the most potent ACPP analog was selected using MT1-MMP sensitivity and enzyme specificity assays. This ACPP, called ACPP-B, showed high sensitivity towards MT1-MMP, soluble MMP-2, and MT2-MMP, while limited sensitivity was measured for other members of the MMP family. In in vitro cell assays, radiolabeled ACPP-B showed efficient cellular uptake upon activation. A pilot in vivo study showed increased uptake of the radiolabeled probe in regions of infarcted myocardium compared to remote myocardium, warranting further in vivo evaluation.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Sondas Moleculares , Radioisótopos/metabolismo , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacocinética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Especificidade por Substrato , Distribuição Tecidual
11.
J Mol Biol ; 435(13): 168095, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068580

RESUMO

Matrix metalloproteinases (MMPs) are key drivers of various diseases, including cancer. Development of probes and drugs capable of selectively inhibiting the individual members of the large MMP family remains a persistent challenge. The inhibitory N-terminal domain of tissue inhibitor of metalloproteinases-2 (N-TIMP2), a natural broad MMP inhibitor, can provide a scaffold for protein engineering to create more selective MMP inhibitors. Here, we pursued a unique approach harnessing both computational design and combinatorial screening to confer high binding specificity toward a target MMP in preference to an anti-target MMP. We designed a loop extension of N-TIMP2 to allow new interactions with the non-conserved MMP surface and generated an efficient focused library for yeast surface display, which was then screened for high binding to the target MMP-14 and low binding to anti-target MMP-3. Deep sequencing analysis identified the most promising variants, which were expressed, purified, and tested for selectivity of inhibition. Our best N-TIMP2 variant exhibited 29 pM binding affinity to MMP-14 and 2.4 µM affinity to MMP-3, revealing 7500-fold greater specificity than WT N-TIMP2. High-confidence structural models were obtained by including NGS data in the AlphaFold multiple sequence alignment. The modeling together with experimental mutagenesis validated our design predictions, demonstrating that the loop extension packs tightly against non-conserved residues on MMP-14 and clashes with MMP-3. This study demonstrates how introduction of loop extensions in a manner guided by target protein conservation data and loop design can offer an attractive strategy to achieve specificity in design of protein ligands.


Assuntos
Metaloproteinase 14 da Matriz , Metaloproteinase 3 da Matriz , Engenharia de Proteínas , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Mutagênese
12.
J Ethnopharmacol ; 291: 115156, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245628

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: LongShengZhi capsule (LSZ), a traditional Chinese medicine, is used for treatment of patients with vascular diseases. LSZ reduced doxorubicin-induced heart failure by reducing production of reactive oxygen species and inhibiting inflammation and apoptosis. AIM OF THE STUDY: This study was to explore whether LSZ could alleviate cardiac remodeling via upregulation of microRNA (miR)-150-5p and the downstream target. Cardiac remodeling was induced by Ang II in vivo and in vitro. RESULTS: LSZ attenuated Ang II-induced cardiac hypertrophy and fibrosis in rats, and in primary cardiomyocytes (CMs) and primary cardiac fibroblasts (CFs). MiR-150-5p was downregulated in Ang II-induced rat heart, CMs and CFs, and these decreases were reserved by LSZ. In vivo overexpression of miR-150-5p by transfection of miR-150-5p agomiR protected Ang II-induced cardiac hypertrophy and fibrosis in rats. Meanwhile, its overexpression also reversed Ang II-induced upregulation of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and ß-myosin heavy chain (ß-MHC) in rat hearts and primary CMs, as well as upregulation of collagen I, collagen III and transforming growth factor-ß (TGF-ß) in rat hearts and primary CFs. Matrix metalloproteinase 14 (MMP14) was validated as the target gene of miR-150-5p, which was overexpressed in Ang II-induced rat heart, rat primary CMs and primary CFs. Notably, overexpression of MMP14 induced cardiac remodeling, and reversed the protective role of miR-150-5p in downregulating Ang II-induced upregulation of hypertrophy and fibrosis markers in vitro. CONCLUSION: Collectively, LSZ protects Ang II-induced cardiac dysfunction and remodeling via upregulation of miR-150-5p to target MMP14. Administration of LSZ, upregulation of miR-150-5p or targeting of MMP14 may be strategies for cardiac remodeling therapy.


Assuntos
Medicamentos de Ervas Chinesas , Metaloproteinase 14 da Matriz , MicroRNAs , Remodelação Ventricular , Animais , Ratos , Angiotensina II/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Metaloproteinase 14 da Matriz/genética , MicroRNAs/genética , Miócitos Cardíacos , Regulação para Cima , Remodelação Ventricular/efeitos dos fármacos
13.
Transl Androl Urol ; 11(11): 1523-1534, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36507474

RESUMO

Background: Matrix metalloproteinase 14 (MMP14) has been reported to be upregulated in some types of cancer and to promote cancer cell invasion and metastasis. However, the expression profile and functional role of MMP14 in kidney renal clear cell carcinoma (KIRC) remains unknown. This study investigated the association between MMP14 expression level and prognosis in KIRC. Methods: The messenger RNA (mRNA) expression profile and clinical data (including T stage, N stage, M stage, pathologic stage, gender, race, age, histologic grade, serum calcium, hemoglobin) were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Protein expression was evaluated by immunohistochemistry in the Human Protein Atlas (HPA) database. Correlation analyses between MMP14 and all mRNAs in KIRC were batch calculated, and gene set enrichment analyses (GSEA) were then conducted of Disease Ontology (DO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using R packages. Multivariate logistic regression analysis was used to explore the prognostic factors of KIRC patients. Results: The gene expression of MMP14 was significantly upregulated in KIRC tissues when compared with the normal tissue (P<0.001). The predictive ability of MMP14 as a variable for predicting tumor and normal outcomes had certain accuracy based on the receiver operating characteristic (ROC) model [area under the curve (AUC) =0.881, confidence interval (CI): 0.844-0.917]. When compared with the normal kidney tissue, the protein expression of MMP14 in KIRC got an increased trend, but due to the limited sample size, the difference is not statistically significant (P>0.05). Survival analysis revealed that MMP14 was significantly associated with overall survival in KIRC (P=0.013). GSEA of DO terms indicated high expression of MMP14 was related to KIRC, and GSEA of KEGG pathways showed that MMP14 and its coexpressed genes were significantly positively correlated with pathways in cancer. Signaling pathway GSEA indicated the upregulation of MMP14 in KIRC may activate cancer pathways. Conclusions: MMP14 may be associated with poor prognosis in KIRC and may be a potential prognostic marker for KIRC.

14.
Front Oncol ; 12: 956270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052235

RESUMO

Matrix metalloproteinase 14 (MMP14) expression is implicated in progression of colorectal cancer, but its role in the tumor microenvironment (TME) has been unclear. The relevance of MMP14 to colorectal cancer progression was explored by analysis of transcriptomic data for colorectal adenocarcinoma patients (n = 592) in The Cancer Genome Atlas. The role of MMP14 in the TME was investigated in a retrospective analysis of tumor samples from 86 individuals with stage III colorectal cancer by single cell-based spatial profiling of MMP14 expression as performed by 12-color multiplex immunohistochemistry (mIHC). Analysis of gene expression data revealed that high MMP14 expression was associated with tumor progression and implicated both cancer-associated fibroblasts (CAFs) and tumor-associated macrophages in such progression. Spatial profiling by mIHC revealed that a higher percentage of MMP14+ cells among intratumoral CAFs (MMP14+ CAF/CAF ratio) was associated with poorer relapse-free survival. Multivariable analysis including key clinical factors identified the MMP14+ CAF/CAF ratio as an independent poor prognostic factor. Moreover, the patient subset with both a high MMP14+ CAF/CAF ratio and a low tumor-infiltrating lymphocyte density showed the worst prognosis. Our results suggest that MMP14+ CAFs play an important role in progression of stage III colorectal cancer and may therefore be a promising therapeutic target.

15.
Phytomed Plus ; 2(2): 100252, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403089

RESUMO

Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.

16.
Antiviral Res ; 192: 105116, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107282

RESUMO

Growing evidence supports that chronic or latent infection of the central nervous system might be implicated in Alzheimer's disease (AD). Among them, Herpes simplex virus type 1 (HSV-1) has emerged as a major factor in the etiology of the disease. Our group is devoted to the study of the relationship among HSV-1, oxidative stress (OS) and neurodegeneration. We have found that HSV-1 induces the main neuropathological hallmarks of AD, including the accumulation of intracellular amyloid beta (Aß), hyperphosphorylated tau protein and autophagic vesicles, that OS exacerbates these effects, and that matrix metalloproteinase 14 (MMP-14) participates in the alterations induced by OS. In this work, we focused on the role of MMP-14 in the degenerative markers raised by HSV-1 infection. Interestingly, we found that MMP-14 blockage is a potent inhibitor of HSV-1 infection efficiency, that also reduces the degeneration markers, accumulation of Aß and hyperphosphorylated tau, induced by the virus. Our results point to MMP-14 as a potent antiviral target to control HSV-1 infection and its associated neurodegenerative effects.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/virologia , Peptídeos beta-Amiloides/metabolismo , Animais , Antivirais/farmacologia , Autofagossomos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Herpes Simples/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Metaloproteinase 14 da Matriz/deficiência , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Neuroblastoma/patologia , Estresse Oxidativo , Fosforilação , Proteínas tau/metabolismo
17.
J Virol Methods ; 290: 114076, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515662

RESUMO

Previous studies showed that, compared to genotype IV Newcastle disease virus (NDV), genotype VII NDV induced extensive extracellular matrix (ECM) degradation by up-regulating the protein expression of matrix metalloproteinase (MMP)-14 in chicken spleens. To investigate potential relationship between MMP-14 function and the ECM degradation, an in vitro peripheral blood mononuclear cells (PBMCs) infection model was established to study the effect of genotype VII NDV (JS5/05) infection on MMP-14 expression, ECM degradation and cell transmigration. The gene and protein expression levels of MMP-14 in NDV-infected chicken PBMCs were measured by quantitative real-time PCR (qRT-PCR) and Western blot, and the subcellular location of MMP-14 was analyzed using immunofluorescence microscopy. A fluorescence-based collagen degradation assay was optimized to measure ECM degradation in PBMCs. Additionally, parameters of a transwell-based transmigration assay were also optimized to determine chemotaxis and transmigration of virus-infected PBMCs. The results showed that JS5/05 up-regulated significantly the expression of MMP-14 in PBMCs at the mRNA and protein levels compared to genotype IV NDV (Herts/33). MMP-14 was transported towards the membrane and accumulated on the cell surface of the JS5/05-infected cells, whereas it remained mainly in the cytoplasm of the Herts/33-infected cells. Collagen degradation assay showed that JS5/05-infected cells exhibited significant collagen degradation compared to the Herts/33-infected cells, and the areas of collagen degradation co-localized with cell surface MMP-14 in the JS5/05-infected cells. The transwell-based transmigration system showed that the transmigration of the JS5/05-infected PBMCs was enhanced significantly compared to the Herts/33-infected cells. These results demonstrated that genotype VII NDV induced up-regulation and surface accumulation of MMP-14 in PBMCs, leading to enhanced ECM degradation and cell migration, and the assays optimized for this study were useful for investigating the regulation of cell behaviour by NDV.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Galinhas , Matriz Extracelular , Genótipo , Leucócitos Mononucleares , Vírus da Doença de Newcastle/genética
18.
Regen Ther ; 18: 292-301, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34504910

RESUMO

INTRODUCTION: Transplantation of IC-2-engineered bone marrow-derived mesenchymal stem cell (BM-MSC) sheets (IC-2 sheets) was previously reported to potentially reduce liver fibrosis. METHODS: This study prepared IC-2-engineered cell sheets from multiple lots of BM-MSCs and examined the therapeutic effects of these cell sheets on liver fibrosis induced by carbon tetrachloride in mice. The predictive factors for antifibrotic effect on liver fibrosis were tried to identify in advance. RESULTS: Secreted matrix metalloproteinase (MMP)-14 was found to be a useful predictive factor to reduce liver fibrosis. Moreover, the cutoff index of MMP-14 for 30% reduction of liver fibrosis was 0.918 fg/cell, judging from univariate analysis and receiver operating curve analysis. In addition, MMP-13 activity and thioredoxin contents in IC-2 sheets were also inversely correlated with hepatic hydroxyproline contents. Finally, IC-2 was also found to promote MMP-14 secretion from BM-MSCs of elderly patients. Surprisingly, the values of secreted MMP-14 from BM-MSCs of elderly patients were much higher than those of young persons. CONCLUSION: The results of this study suggest that the IC-2 sheets would be applicable to clinical use in autologous transplantation for patients with cirrhosis regardless of the patient's age.

19.
Front Oncol ; 10: 559568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363004

RESUMO

Abnormal metabolism is one of the hallmarks of cancer cells. Monoacylglycerol lipase (MGLL), a key enzyme in lipid metabolism, has emerged as an important regulator of tumor progression. In this study, we aimed to characterize the role of MGLL in the development of lung adenocarcinoma (LUAD). To this end, we used tissue microarrays to evaluate the expression of MGLL in LUAD tissue and assessed whether the levels of this protein are correlated with clinicopathological characteristics of LUAD. We found that the expression of MGLL is higher in LUAD samples than that in adjacent non-tumor tissues. In addition, elevated MGLL expression was found to be associated with advanced tumor progression and poor prognosis in LUAD patients. Functional studies further demonstrated that stable short hairpin RNA (shRNA)-mediated knockdown of MGLL inhibits tumor proliferation and metastasis, both in vitro and in vivo, and mechanistically, our data indicate that MGLL regulates Cyclin D1 and Cyclin B1 in LUAD cells. Moreover, we found that knockdown of MGLL suppresses the expression of matrix metalloproteinase 14 (MMP14) in A549 and H322 cells, and in clinical samples, expression of MMP14 is significantly correlated with MGLL expression. Taken together, our results indicate that MGLL plays an oncogenic role in LUAD progression and metastasis and may serve as a potential biomarker for disease prognosis and as a target for the development of personalized therapies.

20.
Thorac Cancer ; 11(11): 3168-3174, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32930509

RESUMO

BACKGROUND: Matrix metalloproteinase-14 (MMP-14) is known to be a key regulator of oncogenesis and tumor progression. The present study was designed to assess the relationship between the downregulation of MMP-14 and the in vitro proliferative, migratory, and invasive activity of esophageal squamous cell carcinoma (ESCC) cells. METHODS: MMP-14 expression in human ESCC and paracancerous normal esophageal tissue samples was evaluated via immunohistochemistry, and correlations between MMP-14 staining and patient clinicopathological features were examined. In addition, siRNA was used to knockdown MMP-14 in ESCC cells, and the proliferation and invasive activity of these cells were then evaluated via MTT and Transwell assays, respectively. Flow cytometry was additionally used to assess cell cycle progression, while Western blotting was employed to measure protein levels within these cells. RESULTS: ESCC samples were found to exhibit MMP-14 overexpression relative to paracancerous tissue samples, and this overexpression was positively correlated with tumor T classification (T1-2 vs. T3; P < 0.05), N classification (negative vs. positive; P < 0.001), degree of differentiation (G1 vs. G3, P < 0.05; G2 vs. G3, P < 0.05) and clinical stage (I-IIA vs. IIB-III; P < 0.05). When MMP-14 was knocked down in ESCC cells, this induced cell cycle arrest, impairing their proliferative and invasive activity. CONCLUSIONS: MMP-14 is a key regulator of the proliferation and invasion of ESCC cells, making it a viable therapeutic target for the treatment of this cancer.


Assuntos
Neoplasias Esofágicas/enzimologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , Metaloproteinase 14 da Matriz/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Regulação para Baixo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Metaloproteinase 14 da Matriz/genética , Pessoa de Meia-Idade , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa