Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.570
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615086

RESUMO

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Assuntos
Adipogenia/genética , Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Tetraspanina 28/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Ataxina-1/metabolismo , Feminino , Fibronectinas/farmacologia , Quinase 1 de Adesão Focal/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Células-Tronco/citologia , Tetraspanina 28/genética
2.
Physiol Rev ; 104(3): 1061-1119, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300524

RESUMO

Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.


Assuntos
Doenças Cardiovasculares , Ceramidas , Ceramidas/metabolismo , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo
3.
Physiol Rev ; 104(2): 727-764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882731

RESUMO

The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Humanos , Miocárdio/metabolismo , Coração , Ácidos Graxos/metabolismo , Antígenos CD36/metabolismo
4.
Immunity ; 55(11): 1981-1992, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351373

RESUMO

Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2 , Imunoterapia , Homeostase
5.
Immunol Rev ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666618

RESUMO

Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.

6.
Semin Immunol ; 65: 101699, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428172

RESUMO

Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.


Assuntos
Anti-Inflamatórios , Materiais Biomiméticos , Lipoxinas , Doenças Metabólicas , Humanos , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoxinas/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Fagocitose/fisiologia , Materiais Biomiméticos/uso terapêutico
7.
Am J Hum Genet ; 110(2): 273-283, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36649705

RESUMO

This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.


Assuntos
Epigênese Genética , Epigenoma , Humanos , Feminino , Índice de Massa Corporal , Epigênese Genética/genética , Obesidade/genética , HDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Metilação de DNA/genética , Epigenômica , Triglicerídeos , Ilhas de CpG/genética
8.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924808

RESUMO

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Camundongos , Animais , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , Fenilalanina Hidroxilase/genética , Modelos Animais de Doenças , Fenilalanina/genética , Edição de Genes
9.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574710

RESUMO

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos/metabolismo , Lipídeos , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo
10.
J Biol Chem ; 300(3): 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272225

RESUMO

The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.


Assuntos
Clatrina , Proteínas SNARE , Humanos , Acetilglucosamina/metabolismo , Clatrina/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo , Animais , Acetilação , Glucose/metabolismo
11.
Physiology (Bethesda) ; 39(2): 98-125, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051123

RESUMO

The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Humanos , Diabetes Mellitus/metabolismo , Tecido Adiposo/metabolismo , Homeostase , Doenças Metabólicas/metabolismo , Transdução de Sinais
12.
Mol Cell ; 66(6): 761-771, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622521

RESUMO

Life is stressful. Organisms are repeatedly exposed to stressors that disrupt protein homeostasis (proteostasis), resulting in protein misfolding and aggregation. To sense and respond to proteotoxic perturbations, cells have evolved compartment-specific stress responses, such as the unfolded protein response of the endoplasmic reticulum (UPRER). However, UPRER function is impaired with age, which, we propose, creates a permissive environment for protein aggregation, unresolved ER stress, and chronic inflammation. Understanding age-related changes to the UPRER will provide new avenues for therapeutic intervention in metabolic disease, neurodegeneration, and aging.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Envelhecimento/metabolismo , Envelhecimento/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Retículo Endoplasmático/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação , NF-kappa B/metabolismo , Agregados Proteicos
13.
Subcell Biochem ; 104: 295-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963492

RESUMO

The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia , Animais , Ciclo do Ácido Cítrico/fisiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/química
14.
J Proteome Res ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407022

RESUMO

The co-occurrence of multiple chronic metabolic diseases is highly prevalent, posing a huge health threat. Clarifying the metabolic associations between them, as well as identifying metabolites which allow discrimination between diseases, will provide new biological insights into their co-occurrence. Herein, we utilized targeted serum metabolomics and lipidomics covering over 700 metabolites to characterize metabolic alterations and associations related to seven chronic metabolic diseases (obesity, hypertension, hyperuricemia, hyperglycemia, hypercholesterolemia, hypertriglyceridemia, fatty liver) from 1626 participants. We identified 454 metabolites were shared among at least two chronic metabolic diseases, accounting for 73.3% of all 619 significant metabolite-disease associations. We found amino acids, lactic acid, 2-hydroxybutyric acid, triacylglycerols (TGs), and diacylglycerols (DGs) showed connectivity across multiple chronic metabolic diseases. Many carnitines were specifically associated with hyperuricemia. The hypercholesterolemia group showed obvious lipid metabolism disorder. Using logistic regression models, we further identified distinguished metabolites of seven chronic metabolic diseases, which exhibited satisfactory area under curve (AUC) values ranging from 0.848 to 1 in discovery and validation sets. Overall, quantitative metabolome and lipidome data sets revealed widespread and interconnected metabolic disorders among seven chronic metabolic diseases. The distinguished metabolites are useful for diagnosing chronic metabolic diseases and provide a reference value for further clinical intervention and management based on metabolomics strategy.

15.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099962

RESUMO

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glicemia/metabolismo , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Insulina/metabolismo
16.
J Cell Physiol ; 239(5): e31212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308646

RESUMO

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


Assuntos
Peptídeo C , Humanos , Peptídeo C/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Transdução de Sinais
17.
Clin Infect Dis ; 78(2): 395-401, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37698083

RESUMO

BACKGROUND: Weight gain following initiation of antiretroviral therapy (ART) is common. We assessed the impact of changes in weight in the year following ART initiation with subsequent cardiometabolic disease among AIDS Clinical Trials Group (ACTG) participants. METHODS: Linear regression models were fit to examine the association between change in weight/waist circumference (WC) in weeks 0-48 and change in metabolic parameters in weeks 0-48 and 48-96. Cox proportional hazard models were fit to examine the association between changes in weight/WC in weeks 0-48 and diabetes mellitus (DM), metabolic syndrome, or cardiometabolic and cardiovascular events after week 48. RESULTS: Participants (N = 2624) were primarily male (81%) and non-White (60%). Mean weight gain from 0-48 weeks was 3.6 kg (SD 7.3); 130 participants developed DM; 360 metabolic syndrome; 424 any cardiometabolic event; 28 any cardiovascular event, over 480 weeks of follow-up. In adjusted models, total cholesterol increased by 0.63 mg/dL (95% confidence interval [CI] [.38, .089]) and LDL by 0.39 mg/dL (0.19, 0.59) per 1 kg increase in weight from weeks 0 to48. Participants who experienced >10% weight gain (vs -5% to 5%) had an increased risk of DM (hazard ratio [HR] 2.01, 95% CI [1.30, 3.08]), metabolic syndrome (HR 2.24, 95% CI [1.55, 2.62]), and cardiometabolic outcomes (HR 1.54, 95% CI [1.22, 1.95]). Participants who lost more than 5% of their baseline weight had a lower risk of incident metabolic syndrome (HR 0.67, 95% CI [0.42, 1.07]). Trends for WC were similar. CONCLUSIONS: Weight and body composition changes in the first year following ART initiation are associated with contemporaneous changes in metabolic parameters and subsequent cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Infecções por HIV , Síndrome Metabólica , Humanos , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Aumento de Peso , Infecções por HIV/tratamento farmacológico , Fatores de Risco
18.
Curr Issues Mol Biol ; 46(3): 2320-2342, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534764

RESUMO

Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.

19.
Curr Issues Mol Biol ; 46(3): 1810-1831, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534735

RESUMO

The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.

20.
J Urol ; 211(1): 124-133, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862455

RESUMO

PURPOSE: Diabetes and obesity, components of the metabolic syndrome (MetS), are risk factors for urinary incontinence (UI) and chronic kidney disease (CKD). We interrogated US population-based data to explore independent, sex-specific associations between nondiabetic MetS, with and without obesity, and UI and/or CKD. MATERIALS AND METHODS: We analyzed data from 8586 males and 8420 females ≥20 years from the National Health and Nutrition Examination Survey. Multivariable logistic regression models were used to examine associations of UI or CKD with diabetes and 4 nondiabetic obesity/metabolic phenotypes: non-MetS/nonobese, MetS/nonobese, non-MetS/obese, and MetS/obese. Multinominal logistic regression models were used to assess associations of co-occurring UI/CKD with obesity/metabolic phenotypes. RESULTS: Male MetS/obese participants had increased odds of any UI (1.25; 95% CI 1.00-1.57) and urgency UI (1.36; 1.03-1.80), compared with non-MetS/nonobese participants. Female MetS/obese participants had increased odds of any UI (2.16; 95% CI 1.76-2.66), stress UI (1.51; 1.21-1.87), and mixed UI (1.66; 1.31-2.11) compared with non-MetS/nonobese participants. The odds of co-occurring UI/CKD were increased relative to either condition alone in persons with diabetes, and in males with MetS/obese phenotypes and females with MetS phenotypes as compared to same sex participants with neither obesity nor MetS. CONCLUSIONS: We found novel associations between MetS/obese and urgency UI in males without diabetes, and between SUI and both MetS and obesity in females without diabetes. Odds estimates for UI/CKD were increased by existing obesity or MetS as compared to those for UI or CKD alone. Improved understanding of modifiable factors associated with UI will inform prevention and treatment opportunities.


Assuntos
Diabetes Mellitus , Síndrome Metabólica , Insuficiência Renal Crônica , Incontinência Urinária por Estresse , Incontinência Urinária , Masculino , Humanos , Feminino , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Inquéritos Nutricionais , Obesidade/complicações , Obesidade/epidemiologia , Diabetes Mellitus/epidemiologia , Incontinência Urinária/etiologia , Incontinência Urinária/complicações , Fatores de Risco , Incontinência Urinária por Estresse/complicações , Insuficiência Renal Crônica/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa