Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
2.
Trends Genet ; 39(9): 686-702, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365103

RESUMO

Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.


Assuntos
Metagenômica , Microbiota , Humanos , Microbiota/genética , Transcriptoma/genética , Sequenciamento de Nucleotídeos em Larga Escala
3.
J Virol ; 98(8): e0008324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38995042

RESUMO

Mosquitoes can transmit several pathogenic viruses to humans, but their natural viral community is also composed of a myriad of other viruses such as insect-specific viruses (ISVs) and those that infect symbiotic microorganisms. Besides a growing number of studies investigating the mosquito virome, the majority are focused on few urban species, and relatively little is known about the virome of sylvatic mosquitoes, particularly in high biodiverse biomes such as the Brazilian biomes. Here, we characterized the RNA virome of 10 sylvatic mosquito species from Atlantic forest remains at a sylvatic-urban interface in Northeast Brazil employing a metatranscriptomic approach. A total of 16 viral families were detected. The phylogenetic reconstructions of 14 viral families revealed that the majority of the sequences are putative ISVs. The phylogenetic positioning and, in most cases, the association with a high RNA-dependent RNA polymerase amino acid divergence from other known viruses suggests that the viruses characterized here represent at least 34 new viral species. Therefore, the sylvatic mosquito viral community is predominantly composed of highly divergent viruses highlighting the limited knowledge we still have about the natural virome of mosquitoes in general. Moreover, we found that none of the viruses recovered were shared between the species investigated, and only one showed high identity to a virus detected in a mosquito sampled in Peru, South America. These findings add further in-depth understanding about the interactions and coevolution between mosquitoes and viruses in natural environments. IMPORTANCE: Mosquitoes are medically important insects as they transmit pathogenic viruses to humans and animals during blood feeding. However, their natural microbiota is also composed of a diverse set of viruses that cause no harm to the insect and other hosts, such as insect-specific viruses. In this study, we characterized the RNA virome of sylvatic mosquitoes from Northeast Brazil using unbiased metatranscriptomic sequencing and in-depth bioinformatic approaches. Our analysis revealed that these mosquitoes species harbor a diverse set of highly divergent viruses, and the majority comprises new viral species. Our findings revealed many new virus lineages characterized for the first time broadening our understanding about the natural interaction between mosquitoes and viruses. Finally, it also provided several complete genomes that warrant further assessment for mosquito and vertebrate host pathogenicity and their potential interference with pathogenic arboviruses.


Assuntos
Culicidae , Filogenia , Viroma , Animais , Brasil , Viroma/genética , Culicidae/virologia , Mosquitos Vetores/virologia , Genoma Viral , RNA Viral/genética , Vírus de Insetos/genética , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação
4.
Proc Natl Acad Sci U S A ; 119(26): e2118852119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727987

RESUMO

Carbon storage and cycling in boreal forests-the largest terrestrial carbon store-is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree-microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host-microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.


Assuntos
Ascomicetos , Basidiomycota , Micorrizas , Picea , Ascomicetos/metabolismo , Basidiomycota/metabolismo , Carbono/metabolismo , Ecossistema , Florestas , Micorrizas/genética , Micorrizas/fisiologia , Picea/genética , Picea/microbiologia , Solo/química , Microbiologia do Solo , Taiga , Transcriptoma , Árvores/metabolismo , Árvores/microbiologia
5.
Appl Environ Microbiol ; 90(8): e0108324, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39041797

RESUMO

Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Água do Mar , Tensoativos , Microbiota/efeitos dos fármacos , Água do Mar/microbiologia , Água do Mar/química , Tensoativos/metabolismo , Tensoativos/farmacologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Transcriptoma , Hidrocarbonetos/metabolismo , Poluentes Químicos da Água/metabolismo
6.
J Fish Dis ; : e14006, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136064

RESUMO

In 2021, White Trevally or Striped Jack cultured in the western part of Japan exhibited mild, but chronic mortalities from late September through early October. The cumulative mortality rate was approximately 0.02% per a net pen containing approximately 50,000 fish. Although the cumulative mortality rate was not high, most of the fish in net pens showed characteristic gross signs and an abnormal swimming behaviour. The body of diseased fish became pale and the yellow lines on the lateral sides of fish body became darken. In addition, silver lines along the dorsal fin became apparent. Loss of schooling behaviour was noted during the mortality event. In addition, affected fish became lethargic and failed to swim against current, or frequently stopped swimming and sank to the bottom of net pens after feeding. The goal of this study was to identify the cause of the mortality event. To achieve the goal, we used histopathology and metatranscriptome analysis. Histopathological examination revealed that xenoma of microsporidian were frequently observed in the nerve axon in the brain and spinal cord. Spores observed in the sections were stained with a fluorescent dye, Uvitex 2B, indicating those spores are microsporidian. The data from metatranscriptome analysis indicated that the microsporidian is Spraguea sp. The microsporidian was frequently detected from diseased fish with similar symptoms collected in the same region, suggesting that the microsporidian was highly associated with abnormal swimming behaviour of fish.

7.
Mol Microbiol ; 117(2): 508-524, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931347

RESUMO

Autophagy is a critical mechanism deployed by eukaryotic cells in response to stress, including viral infection, to boost the innate antimicrobial responses. However, an increasing number of pathogens hijack the autophagic machinery to facilitate their own replication. Influenza A virus (IAV), responsible for several global pandemics, has an intricate dependence on autophagy for successful replication in mammalian cells. To elucidate key chokepoints in the host stress responses facilitating IAV replication, we constructed a meta-transcriptome of IAV and host gene expression dynamics during early (1-3 hpi), mid (4-6 hpi), and late (8-12 hpi) stages of the viral replication cycle at two multiplicities of infection (MOI): 1 and 5. We supplemented the global transcriptome study with phosphoproteomic analysis of stress-activated protein kinase (SAPK/JNK) signaling in lung carcinoma (predominantly used as an in vitro model of IAV replication) and normal human bronchial epithelial cells. We report significant differences in the activation profiles of autophagy regulating genes upon IAV infection at the two MOI as well as divergent dependence on ULK1 signaling within the normal and cancer cells. Regardless of the cell model, JNK-Thr187 signaling was crucial for the production of infectious viral particles.


Assuntos
Vírus da Influenza A , Animais , Autofagia/genética , Células Epiteliais , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Mamíferos , Transdução de Sinais , Replicação Viral/genética
8.
Appl Environ Microbiol ; 89(12): e0132023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054735

RESUMO

IMPORTANCE: Ruminants play a key role in the conversion of cellulolytic plant material into high-quality meat and milk protein for humans. The rumen microbiome is the driver of this conversion, yet there is little information on how gene expression within the microbiome impacts the efficiency of this conversion process. The current study investigates gene expression in the rumen microbiome of beef heifers and bison and how transplantation of ruminal contents from bison to heifers alters gene expression. Understanding interactions between the host and the rumen microbiome is the key to developing informed approaches to rumen programming that will enhance production efficiency in ruminants.


Assuntos
Bison , Microbiota , Humanos , Animais , Bovinos , Feminino , Ração Animal/análise , Rúmen/metabolismo , Ruminantes , Dieta/veterinária , Fermentação
9.
Mol Ecol ; 32(2): 444-459, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326559

RESUMO

Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts. The results revealed that one-day short-term maintenance triggered global transcriptional perturbation in symbionts, but little gene expression changes in mussel hosts, which were mainly involved in responses to environmental changes. Long-term maintenance with depleted symbionts induced a metabolic shift in the mussel host. The most notable changes were the suppression of sterol biosynthesis and the complementary activation of terpenoid backbone synthesis in response to the reduction of bacteria-derived terpenoid sources. In addition, we detected the upregulation of host proteasomes responsible for amino acid deprivation caused by symbiont depletion. Additionally, a significant correlation between host microtubule motor activity and symbiont abundance was revealed, suggesting the possible function of microtubule-based intracellular trafficking in the nutritional interaction of symbiosis. Overall, by analyzing the dynamic transcriptomic changes during the loss of symbionts, our study highlights the nutritional importance of symbionts in supplementing terpenoid compounds and essential amino acids and provides insight into the molecular mechanisms and strategies underlying the symbiotic interactions in deep-sea ecosystems.


Assuntos
Ecossistema , Mytilidae , Animais , Simbiose/genética , Mytilidae/genética , Mytilidae/metabolismo , Mytilidae/microbiologia , Bactérias/genética , Perfilação da Expressão Gênica
10.
Int Microbiol ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759067

RESUMO

The present study compared bacterial and fungal diversity of kefir beverages produced using milk (MK) or sugared water (WK) as propagation matrices and grains from the cities of Curitiba (CU) or Salvador (SA), Brazil, by sequencing the complete set of RNA transcripts produced in four products. In Brazil, milk and sugared water are used as matrices to propagate kefir grains. In all beverages, the bacterial community was composed of Lactobacillaceae and Acetobacteraceae. Saccharomycetaceae was the yeast family more abundant in WK, and Dipodascaceae and Pichiaceae in MK. Regarding KEGG mapping of functional orthologs, the four kefir samples shared 70% of KO entries of yeast genes but only 36% of bacterial genes. Concerning main metabolic processes, the relative abundance of transcripts associated with metabolism (energy metabolism) and environmental information processing (membrane transport) had the highest water/milk kefir ratio observed in Firmicutes. In contrast, transcripts associated with genetic information processing (protein translation, folding, sorting, and degradation) oppositely had the lowest water/milk ratios. Concluding, milk and water kefir have quite different communities of microorganisms. Still, the main mapped functional processes are similar, with only quantitative variation in membrane transport and energy acquisition in the water kefir and protein synthesis and turnover in the milk kefir.

11.
Environ Sci Technol ; 57(14): 6008-6020, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996193

RESUMO

The decomposition and pathogen inactivation of fecal sludge (FS) are vitally important for safely managing onsite sanitation and protecting public and environmental health. However, the microbiome and virome assemblages in FS after chemical and biological treatments remain unclear. Here, we reported the differences in the solid reduction and microbiomes of FS subjected to potassium ferrate (PF), alkali (ALK), and sodium hypochlorite (NaClO) pretreatments and anaerobic digestion (AD). The PF and NaClO pretreatments enhanced FS hydrolysis and pathogen suppression, respectively; AD suppressed Gram-positive bacteria. Most of the viromes were those of bacteriophages, which were also shaped by chemical pretreatments and AD. Metatranscriptome analysis revealed distinct gene expression patterns between the PF- and ALK-pretreated FS and the subsequent AD. Differentially expressed gene profiles indicated that genes related to biological processes, molecular functions, and transcriptional regulators were upregulated in ALK-AD and PF-AD samples. These findings suggested that the effect of different treatment technologies on the viral diversity, pathogen abundance, and metabolic function of the core microbiome extends beyond FS decomposition and that the use of combined processes would provide possible alternatives for FS management in pandemic emergencies.


Assuntos
Microbiota , Viroma , Anaerobiose , Esgotos/microbiologia , Receptores Proteína Tirosina Quinases , Metano , Eliminação de Resíduos Líquidos
12.
Environ Sci Technol ; 57(6): 2538-2547, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36720085

RESUMO

Appropriate inhibitors might play important roles in achieving ammonia retention in biological wastewater treatment and its reuse in agriculture. In this study, the feasibility of epsilon-poly-l-lysine (ε-PL) as a novel natural ammonia oxidation inhibitor was investigated. Significant inhibition (ammonia oxidation inhibition rate was up to 96.83%) was achieved by treating the sludge with ε-PL (400 mg/L, 12 h soaking) only once and maintaining for six cycles. Meanwhile, the organic matter and nitrite removal was not affected. This method was effective under the common environmental conditions of biological wastewater treatment. Metatranscriptome uncovered the possible action mechanisms of ε-PL. The ammonia oxidation inhibition was due to the co-decrease of Nitrosomonas abundance, ammonia oxidation genes, and the cellular responses of Nitrosomonas. Thauera and Dechloromonas could adapt to ε-PL by stimulating stress responses, which maintained the organic matter and nitrite removal. Importantly, ε-PL did not cause the enhancement of antibiotic resistance genes and virulent factors. Therefore, ε-PL showed a great potential of ammonia retention, which could be applied in the biological treatment of wastewater for agricultural reuse.


Assuntos
Polilisina , Águas Residuárias , Polilisina/farmacologia , Amônia , Nitritos , Esgotos
13.
Environ Res ; 224: 115469, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773636

RESUMO

Soil spatial responses to fire are unclear. Using optical chemical sensing with planar 'optodes', pH and dissolved O2 concentration were tracked spatially with a resolution of 360 µm per pixel for 72 h after burning soil in the laboratory with a butane torch (∼1300 °C) and then sprinkling water to simulate a postfire moisture event. Imaging data from planar optodes correlated with microbial activity (quantified via RNA transcripts). Post-fire and post-wetting, soil pH increased throughout the entire ∼13 cm × 17 cm × 20 cm rectangular cuboid of sandy loam soil. Dissolved O2 concentrations were not impacted until the application of water postfire. pH and dissolved O2 both negatively correlated (p < 0.05) with relative transcript expression for galactose metabolism, the degradation of aromatic compounds, sulfur metabolism, and narH. Additionally, dissolved O2 negatively correlated (p < 0.05) with the relative activity of carbon fixation pathways in Bacteria and Archaea, amoA/amoB, narG, nirK, and nosZ. nifH was not detected in any samples. Only amoB and amoC correlated with depth in soil (p < 0.05). Results demonstrate that postfire soils are spatially complex on a mm scale and that using optode-based chemical imaging as a chemical navigator for RNA transcript sampling is effective.


Assuntos
Bactérias , Solo , Solo/química , Bactérias/metabolismo , Archaea/genética , Água , RNA/metabolismo , Microbiologia do Solo
14.
J Clin Periodontol ; 50(3): 316-330, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281629

RESUMO

AIM: To assess the effects of scaling and root planing (SRP) on the dynamics of gene expression by the host and the microbiome in subgingival plaque samples. MATERIALS AND METHODS: Fourteen periodontitis patients were closely monitored in the absence of periodontal treatment for 12 months. During this period, comprehensive periodontal examination and subgingival biofilm sample collection were performed bi-monthly. After 12 months, clinical attachment level (CAL) data were compiled and analysed using linear mixed models (LMM) fitted to longitudinal CAL measurements for each tooth site. LMM classified the sites as stable (S), progressing (P), or fluctuating (F). After the 12-month visit, subjects received SRP, and at 15 months they received comprehensive examination and supportive periodontal therapy. Those procedures were repeated at the 18-month visit, when patients were also sampled. Each patient contributed with one S, one P, and one F site collected at the 12- and 18-month visits. Samples were analysed using Dual RNA-Sequencing to capture host and bacterial transcriptomes simultaneously. RESULTS: Microbiome and host response behaviour were specific to the site's progression classification (i.e., S, P, or F). Microbial profiles of pre- and post-treatment samples exhibited specific microbiome changes, with progressing sites showing the most significant changes. Among them, Porphyromonas gingivalis was reduced after treatment, while Fusobacterium nucleatum showed an increase in proportion. Transcriptome analysis of the host response showed that interleukin (IL)-17, TNF signalling pathways, and neutrophil extracellular trap formation were the primary immune response activities impacted by periodontal treatment. CONCLUSIONS: SRP resulted in a significant "rewiring" of host and microbial activities in the progressing sites, while restructuring of the microbiome was minor in stable and fluctuating sites.


Assuntos
Microbiota , Periodontite , Humanos , Aplainamento Radicular/métodos , Bolsa Periodontal/terapia , Bolsa Periodontal/microbiologia , Periodontite/terapia , Periodontite/microbiologia , Raspagem Dentária/métodos , Porphyromonas gingivalis , Microbiota/genética
15.
Int J Biometeorol ; 67(11): 1803-1811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584759

RESUMO

Even though the scientific documentation is limited, microbiome of healing clay is gradually gaining attention of the scientific community, as a therapeutic force playing an indispensable role in skin disease management. The present study explores the metatranscriptome profile of the Chamliyal clay, widely known for its efficacy in managing various skin problems, using Illumina NextSeq sequencing technology. The gene expression profile of the clay microbial community was analyzed through SEED subsystems of the MG-RAST server. Due to the unavailability of metatranscriptomic data on other therapeutic clays, Chamliyal's profile was compared to non-therapeutic soils, as well as healthy and diseased human skin microbiomes. The study identified Firmicutes, Proteobacteria, and Actinobacteria as the primary active microbial phyla in Chamliyal clay. These resemble those abundant in a healthy human skin microbiome. This is significant as lower levels of these phyla in the skin are linked to inflammatory skin conditions like psoriasis. Interestingly, pathogenic microbes actively metabolizing in the clay were absent. Importantly, 6% of the transcripts annotated to sulfur and iron metabolism, which are known to play a major role in skin disease management. This study provides the most comprehensive and a novel overview of the metatranscriptome of any of the healing clay available worldwide. The findings offer valuable insights into the clay microbiome's potential in managing skin disorders, inspiring future endeavors to harness these insights for medical applications.

16.
J Environ Sci (China) ; 126: 234-248, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503752

RESUMO

Glycogen accumulating organisms (GAOs) are closely related to the deterioration of enhanced biological phosphorus removal systems. However, the metabolic mechanisms that drive GAOs remain unclear. Here, the two-thirds supernatant of a reactor were decanted following the anaerobic period to enrich GAOs. Long-term monitoring demonstrated that the system was stable and exhibited typical characteristics of GAOs metabolism. Acetate was completely consumed after 60 min of the anaerobic phase. The level of glycogen decreased from 0.20 to 0.14 g/gSS during the anaerobic phase, whereas the level of glycogen significantly increased to 0.21g/gSS at the end of the aerobic period. Moreover, there was almost no phosphate release and absorption in the complete periods, thus confirming the successful construction of a GAOs enrichment system. Microbial community analysis demonstrated that Ca. Contendobacter was among the core functional genera and showed the highest activity among all of the communities. Furthermore, our study is the first to identify the involvement of the ethyl-malonyl-CoA pathway in the synthesis of polyhydroxyvalerate via croR, ccr, ecm, mcd, mch and mcl genes. The Embden-Meyerhof-Parnas (EMP) pathway was preferentially used via glgP. Furthermore, the glyoxylate cycle was the main source of ATP under anaerobic conditions, whereas the tricarboxylic acid cycle provided ATP under aerobic conditions. aceA and mdh appeared to be major modulators of the glyoxylate pathway for controlling energy flow. Collectively, our findings not only revealed the crucial metabolic mechanisms in a GAOs enrichment system but also provided insights into the potential application of Ca. Contendobacter for wastewater treatment.


Assuntos
Glicogênio , Microbiota , Fosfatos , Fósforo , Trifosfato de Adenosina
17.
Appl Environ Microbiol ; 88(15): e0099222, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856688

RESUMO

Phytosterols are natural steroids in plants, possessing bioactivities that could modify gut microbes. This experiment aimed to evaluate the effects of feeding phytosterols on the community structures and metabolic functions of the rumen microbiota in perinatal cows. Perinatal cows were supplied with 0 mg (control) or 200 mg (treatment) phytosterols per day. Multiomic analyses were used to analyze the community structures and metabolic functions of rumen microbiota. Results showed that dietary phytosterols increased the copy number of total ruminal bacteria, the concentration of microbial crude protein, and the molar percentage of propionate in the rumen of perinatal cows but had no effects on the alpha diversity of ruminal bacteria. However, they enriched three genera (i.e., Fibrobacter) and seven species (i.e., Fibrobacter succinogenes) within active ruminal bacteria. Metatranscriptomic and metabolomic analyses revealed that dietary phytosterols enhanced the pathway of glycolysis and the family of glycoside hydrolase 13 but depressed the citrate cycle and pyruvate metabolism and several pathways of amino acid biosynthesis. In conclusion, dietary addition of phytosterols improved the growth of ruminal bacteria and changed rumen fermentation by modifying the rumen microbiome and the energy metabolism pathways, which would be beneficial for the energy utilization of perinatal cows. IMPORTANCE Perinatal cows suffer serious physiological stress and energy deficiency. Phytosterols have bioactive functions for gut microbes. However, little knowledge is available on their effects on rumen microbiota and rumen fermentation. Results of the present experiment revealed that dietary supplementation of phytosterols could improve the growth of ruminal bacteria and changed the rumen fermentation to provide more glycogenetic precursors for the perinatal cows by modifying the ruminal bacteria community and altering the energy metabolism pathways of the rumen microbiota. These findings suggest that dietary supplementation of phytosterols would be beneficial for perinatal cows suffering from a negative energy balance.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fitosteróis , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Fermentação , Lactação , Fitosteróis/metabolismo , Fitosteróis/farmacologia , Rúmen/microbiologia
18.
New Phytol ; 233(4): 1828-1842, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34870848

RESUMO

Mesoscale eddies are ubiquitous oceanographic features that influence the metabolism and community structure of Synechococcus. However, the metabolic adaptations of this genus to eddy-associated environmental changes have rarely been studied. We recovered two high-quality Synechococcus metagenome-assembled genomes (MAGs) from eddies in the South China Sea and compared their metabolic variations using metatranscriptomic samples obtained at the same time. The two MAGs (syn-bin1 and syn-bin2) are affiliated with marine Synechococcus subclusters 5.2 (S5.2) and 5.3 (S5.3), respectively. The former exhibited a higher abundance at the surface layer, whereas the latter was more abundant in the deep euphotic layer. Further analysis indicated that syn-bin1 had a strong ability to utilize organic nutrients, which could help it to thrive in the nutrient-deprived surface water. By contrast, syn-bin2 had the genetic potential to perform chromatic acclimation, which could allow it to capture green or blue light at different depths. Additionally, transcriptomic analysis showed that syn-bin2 upregulated genes involved in the synthesis of C4 acids, photosystem II proteins, and HCO3- transporters in the deep euphotic layer, which might contribute to its predominance in low-light environments. Overall, this study expands our understanding of oceanic S5.2 and S5.3 Synechococcus by revealing their metabolic adaptations to mesoscale eddies.


Assuntos
Synechococcus , Aclimatação/genética , Genômica , Água do Mar/química , Synechococcus/genética , Synechococcus/metabolismo , Transcriptoma/genética
19.
Mol Ecol ; 31(15): 3999-4016, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665559

RESUMO

Switching to a new host plant is a driving force for divergence and speciation in herbivorous insects. This process of incorporating a novel host plant into the diet may require a number of adaptations in the insect herbivores that allow them to consume host plant tissue that may contain toxic secondary chemicals. As a result, herbivorous insects are predicted to have evolved efficient ways to detoxify major plant defences and increase fitness by either relying on their own genomes or by recruiting other organisms such as microbial gut symbionts. In the present study we used parallel metatranscriptomic analyses of Altica flea beetles and their gut symbionts to explore the contributions of beetle detoxification mechanisms versus detoxification by their gut consortium. We compared the gut meta-transcriptomes of two sympatric Altica species that feed exclusively on different host plant species as well as their F1 hybrids that were fed one of the two host plant species. These comparisons revealed that gene expression patterns of Altica are dependent on both beetle species identity and diet. The community structure of gut symbionts was also dependent on the identity of the beetle species, and the gene expression patterns of the gut symbionts were significantly correlated with beetle species and plant diet. Some of the enriched genes identified in the beetles and gut symbionts are involved in the degradation of secondary metabolites produced by plants, suggesting that Altica flea beetles may use their gut microbiota to help them feed on and adapt to their host plants.


Assuntos
Besouros , Animais , Besouros/genética , Herbivoria , Insetos , Plantas , Simbiose/genética
20.
J Exp Bot ; 73(8): 2682-2697, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106548

RESUMO

The importance of plants as complex entities influenced by genomes of the associated microorganisms is now seen as a new source of variability for a more sustainable agriculture, also in the light of ongoing climate change. For this reason, we investigated through metatranscriptomics whether the taxa profile and behaviour of microbial communities associated with the wood of 20-year-old grapevine plants are influenced by the health status of the host. We report for the first time a metatranscriptome from a complex tissue in a real environment, highlighting that this approach is able to define the microbial community better than referenced transcriptomic approaches. In parallel, the use of total RNA enabled the identification of bacterial taxa in healthy samples that, once isolated from the original wood tissue, displayed potential biocontrol activities against a wood-degrading fungal taxon. Furthermore, we revealed an unprecedented high number of new viral entities (~120 new viral species among 180 identified) associated with a single and limited environment and with potential impact on the whole holobiont. Taken together, our results suggest a complex multitrophic interaction in which the viral community also plays a crucial role in raising new ecological questions for the exploitation of microbial-assisted sustainable agriculture.


Assuntos
Endófitos , Microbiota , Bactérias/genética , Plantas , Madeira
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa