Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298383

RESUMO

Mitochondrial transcription factor A (TFAM) is one of the widely studied but still incompletely understood mitochondrial protein, which plays a crucial role in the maintenance and transcription of mitochondrial DNA (mtDNA). The available experimental evidence is often contradictory in assigning the same function to various TFAM domains, partly owing to the limitations of those experimental systems. Recently, we developed the GeneSwap approach, which enables in situ reverse genetic analysis of mtDNA replication and transcription and is devoid of many of the limitations of the previously used techniques. Here, we utilized this approach to analyze the contributions of the TFAM C-terminal (tail) domain to mtDNA transcription and replication. We determined, at a single amino acid (aa) resolution, the TFAM tail requirements for in situ mtDNA replication in murine cells and established that tail-less TFAM supports both mtDNA replication and transcription. Unexpectedly, in cells expressing either C-terminally truncated murine TFAM or DNA-bending human TFAM mutant L6, HSP1 transcription was impaired to a greater extent than LSP transcription. Our findings are incompatible with the prevailing model of mtDNA transcription and thus suggest the need for further refinement.


Assuntos
Replicação do DNA , Proteínas Mitocondriais , Animais , Humanos , Camundongos , Replicação do DNA/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Exp Cell Res ; 398(1): 112369, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220258

RESUMO

Mitochondria play an important role in effective cell energy production and cell survival under stress conditions, such as treatment with chemotherapeutic drugs. Mitochondrial biogenesis is increased in ovarian cancer tissues, which is accompanied by alteration of mitochondrial energy metabolism, structure, and dynamics. These factors are involved in tumorigenesis and apoptosis resistance, highlighting the role of mitochondria in resisting cisplatin toxicity. Cisplatin-resistant ovarian cancer cells are dependent on mitochondrial OXPHOS for energy supply, and intracellular PGC1α-mediated mitochondrial biogenesis levels are increased in this cell line, indicating the important role of mitochondrial oxidative phosphorylation in cisplatin resistance. As PGC1α is a key molecule for integrating and coordinating nuclear DNA and mitochondrial DNA transcriptional machinery, an investigation into the regulatory mechanism PGC1α in mitochondrial energy metabolism via transcription may provide new clues for solving chemotherapy resistance. In the present study, it was demonstrated that inhibiting the expression of PGC1α decreased nuclear and mitochondrial DNA transcription factor expression, leading to increased lactic acid production and decreased cellular oxygen consumption and mitochondrial oxidative phosphorylation. Furthermore, mitochondrial stress-induced ROS production, as a feedback signal from mitochondria to the cell nucleus, increased PGC1α expression in SKOV3/DDP cells, which was involved in mitochondrial oxidative phosphorylation regulation. Collectively, the present study provides evidence that PGC1α-mediated nuclear and mitochondrial transcription feedback regulates energy metabolism and is involved in ovarian cancer cells escaping apoptosis during cisplatin treatment.


Assuntos
Mitocôndrias/metabolismo , Neoplasias Ovarianas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas
3.
Mov Disord ; 36(4): 815-831, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513296

RESUMO

Over the past four decades, mitochondrial dysfunction has been a recurring theme in Parkinson's disease (PD) and is hypothesized to play a central role in its disease pathogenesis. Given the instrumental role of mitochondria in cellular energy production, their dysfunction can be detrimental to highly energy-dependent dopaminergic neurons, known to degenerate in PD. Mitochondria harbor multiple copies of their own genomes (mtDNA), encoding critical respiratory chain complexes required for energy production. Consequently, mtDNA has been investigated as a source of mitochondrial dysfunction in PD. As seen in multiple mitochondrial diseases, deleterious mtDNA variation and mtDNA copy number depletion can impede mtDNA protein synthesis, leading to inadequate energy production in affected cells and the onset of a disease phenotype. As such, high burdens of mtDNA defects but also mtDNA depletion, previously identified in the substantia nigra of PD patients, have been suggested to play a role in PD. Genetic variation in nuclear DNA encoding factors required for replicating, transcribing, and translating mtDNA, could underlie these observed mtDNA changes. Herein we examine this possibility and provide an overview of studies that have investigated whether nuclear-encoded genes associated with mtDNA processes may influence PD risk. Overall, pathway-based analysis studies, mice models, and case reports of mitochondrial disease patients manifesting with parkinsonism all implicate genes encoding factors related to mtDNA processes in neurodegeneration and PD. Most notably, cumulative genetic variation in these genes likely contributes to neurodegeneration and PD risk by acting together in common pathways to disrupt mtDNA processes or impair their regulation. © 2021 International Parkinson and Movement Disorder Society © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Animais , DNA Mitocondrial/genética , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
4.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195723

RESUMO

As with all organisms that must organize and condense their DNA to fit within the limited volume of a cell or a nucleus, mammalian mitochondrial DNA (mtDNA) is packaged into nucleoprotein structures called nucleoids. In this study, we first introduce the general modes of DNA compaction, especially the role of the nucleoid-associated proteins (NAPs) that structure the bacterial chromosome. We then present the mitochondrial nucleoid and the main factors responsible for packaging of mtDNA: ARS- (autonomously replicating sequence-) binding factor 2 protein (Abf2p) in yeast and mitochondrial transcription factor A (TFAM) in mammals. We summarize the single-molecule manipulation experiments on mtDNA compaction and visualization of mitochondrial nucleoids that have led to our current knowledge on mtDNA compaction. Lastly, we discuss the possible regulatory role of DNA packaging by TFAM in DNA transactions such as mtDNA replication and transcription.


Assuntos
DNA Mitocondrial/genética , Mamíferos/genética , Animais , Replicação do DNA/genética , DNA Mitocondrial/química , Humanos , Proteínas Mitocondriais/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 289(26): 18595-602, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24798329

RESUMO

Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/enzimologia , Animais , Dano ao DNA , DNA Topoisomerases Tipo I/genética , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Sequências Reguladoras de Ácido Nucleico
6.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497015

RESUMO

The ability of animal orthologs of human mitochondrial transcription factor A (hTFAM) to support the replication of human mitochondrial DNA (hmtDNA) does not follow a simple pattern of phylogenetic closeness or sequence similarity. In particular, TFAM from chickens (Gallus gallus, chTFAM), unlike TFAM from the "living fossil" fish coelacanth (Latimeria chalumnae), cannot support hmtDNA replication. Here, we implemented the recently developed GeneSwap approach for reverse genetic analysis of chTFAM to obtain insights into this apparent contradiction. By implementing limited "humanization" of chTFAM focused either on amino acid residues that make DNA contacts, or the ones with significant variances in side chains, we isolated two variants, Ch13 and Ch22. The former has a low mtDNA copy number (mtCN) but robust respiration. The converse is true of Ch22. Ch13 and Ch22 complement each other's deficiencies. Opposite directionalities of changes in mtCN and respiration were also observed in cells expressing frog TFAM. This led us to conclude that TFAM's contributions to mtDNA replication and respiratory chain biogenesis are genetically separable. We also present evidence that TFAM residues that make DNA contacts play the leading role in mtDNA replication. Finally, we present evidence for a novel mode of regulation of the respiratory chain biogenesis by regulating the supply of rRNA subunits.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Mitocondriais , Fatores de Transcrição , Animais , Humanos , Galinhas/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Mol Biol ; 434(2): 167361, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34808225

RESUMO

MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Succinato Desidrogenase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Linhagem Celular Tumoral , DNA Mitocondrial , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , MicroRNAs/genética , Neoplasias/metabolismo , Osteossarcoma , Transdução de Sinais , Succinato Desidrogenase/genética
8.
DNA (Basel) ; 2(2): 131-148, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36381197

RESUMO

In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.

9.
ACS Chem Neurosci ; 13(19): 2803-2812, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36125124

RESUMO

The amyloid ß (Aß) and the α-synuclein (α-syn) are shown to be translocated into mitochondria. Even though their roles are widely investigated in pathological conditions, information on the presence and functions of Aß and α-syn in mitochondria in endogenous levels is somewhat limited. We hypothesized that endogenous Aß fragments or α-syn could interact with mitochondrial DNA (mtDNA) directly or influence RNAs or transcription factors in mitochondria and change the mtDNA transcription profile. In this review, we summarized clues of these possible interactions.


Assuntos
Doença de Alzheimer , alfa-Sinucleína , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , DNA Mitocondrial/genética , Humanos , Mitocôndrias/patologia , Fatores de Transcrição , alfa-Sinucleína/genética
10.
Cells ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883613

RESUMO

The unavailability of tractable reverse genetic analysis approaches represents an obstacle to a better understanding of mitochondrial DNA replication. Here, we used CRISPR-Cas9 mediated gene editing to establish the conditional viability of knockouts in the key proteins involved in mtDNA replication. This observation prompted us to develop a set of tools for reverse genetic analysis in situ, which we called the GeneSwap approach. The technique was validated by identifying 730 amino acid (aa) substitutions in the mature human TFAM that are conditionally permissive for mtDNA replication. We established that HMG domains of TFAM are functionally independent, which opens opportunities for engineering chimeric TFAMs with customized properties for studies on mtDNA replication, mitochondrial transcription, and respiratory chain function. Finally, we present evidence that the HMG2 domain plays the leading role in TFAM species-specificity, thus indicating a potential pathway for TFAM-mtDNA evolutionary co-adaptations.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Genética Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cells ; 9(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861673

RESUMO

Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Transcrição Gênica
12.
Front Genet ; 10: 1300, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969900

RESUMO

Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is a rare genetic disorder caused by defects in F-box leucine-rich repeat protein 4 (FBXL4). Although FBXL4 is essential for the bioenergetic homeostasis of the cell, the precise role of the protein remains unknown. In this study, we report two cases of unrelated patients presenting in the neonatal period with hyperlactacidemia and generalized hypotonia. Severe mtDNA depletion was detected in muscle biopsy in both patients. Genetic analysis showed one patient as having in compound heterozygosis a splice site variant c.858+5G>C and a missense variant c.1510T>C (p.Cys504Arg) in FBXL4. The second patient harbored a frameshift novel variant c.851delC (p.Pro284LeufsTer7) in homozygosis. To validate the pathogenicity of these variants, molecular and biochemical analyses were performed using skin-derived fibroblasts. We observed that the mtDNA depletion was less severe in fibroblasts than in muscle. Interestingly, the cells harboring a nonsense variant in homozygosis showed normal mtDNA copy number. Both patient fibroblasts, however, demonstrated reduced mitochondrial transcript quantity leading to diminished steady state levels of respiratory complex subunits, decreased respiratory complex IV (CIV) activity, and finally, low mitochondrial ATP levels. Both patients also revealed citrate synthase deficiency. Genetic complementation assays established that the deficient phenotype was rescued by the canonical version of FBXL4, confirming the pathological nature of the variants. Further analysis of fibroblasts allowed to establish that increased mitochondrial mass, mitochondrial fragmentation, and augmented autophagy are associated with FBXL4 deficiency in cells, but are probably secondary to a primary metabolic defect affecting oxidative phosphorylation.

13.
Adv Genet ; 98: 63-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28942795

RESUMO

Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Terapia Genética , Humanos , Mutação , Fosforilação Oxidativa , Fenótipo
14.
Mitochondrion ; 14(1): 34-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184823

RESUMO

Sea urchin mtDNA is transcribed via a different mechanism compared to vertebrates. To gain information on the apparatus of sea urchin mitochondrial transcription we have characterized the DNA binding properties of the mitochondrial transcription factor A (TFAM). The protein contains two HMG box domains but, differently from vertebrates, displays a very short C-terminal tail. Phylogenetic analysis showed that the distribution of tail length is mixed in the different lineages, indicating that it is a trait that undergoes rapid changes during evolution. Homology modeling suggests that the protein adopts the same configuration of the human counterpart and possibly a similar mode of binding to DNA. DNase I footprinting showed that TFAM specifically contacts mtDNA at a fixed distance from three AT-rich consensus sequences that were supposed to act as transcriptional initiation sites. Bound sequences are homologous and contain an inverted repeat motif, which resembles that involved in the intercalation of human TFAM in LSP DNA. The here reported data indicate that sea urchin TFAM specifically binds mtDNA. The protein could intercalate residues at the DNA inverted motif and, despite its short tail, might have a role in mitochondrial transcription.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ouriços-do-Mar/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Pegada de DNA , Proteínas de Ligação a DNA/química , Variação Genética , Proteínas Mitocondriais/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa