Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 266: 110333, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089348

RESUMO

Understanding the molecular mechanisms underpinning diverse vaccination responses is critical for developing efficient vaccines. Molecular subtyping can offer insights into heterogeneous nature of responses and aid in vaccine design. We analyzed multi-omic data from 62 haemagglutinin seasonal influenza vaccine recipients (2019-2020), including transcriptomics, proteomics, glycomics, and metabolomics data collected pre-vaccination. We performed a subtyping analysis on the integrated data revealing five subtypes with distinct molecular signatures. These subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining the effectiveness of seasonal vaccines. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.


Assuntos
Anticorpos Antivirais , Vacinas contra Influenza , Influenza Humana , Multiômica , Vacinação , Humanos , Imunidade Adaptativa/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Testes de Inibição da Hemaglutinação , Imunidade Inata/imunologia , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Proteômica/métodos , Estações do Ano
2.
Alzheimers Dement ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829654

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is accompanied by metabolic alterations both in the periphery and the central nervous system. However, so far, a global view of AD-associated metabolic changes in the brain has been missing. METHODS: We metabolically profiled 500 samples from the dorsolateral prefrontal cortex. Metabolite levels were correlated with eight clinical parameters, covering both late-life cognitive performance and AD neuropathology measures. RESULTS: We observed widespread metabolic dysregulation associated with AD, spanning 298 metabolites from various AD-relevant pathways. These included alterations to bioenergetics, cholesterol metabolism, neuroinflammation, and metabolic consequences of neurotransmitter ratio imbalances. Our findings further suggest impaired osmoregulation as a potential pathomechanism in AD. Finally, inspecting the interplay of proteinopathies provided evidence that metabolic associations were largely driven by tau pathology rather than amyloid beta pathology. DISCUSSION: This work provides a comprehensive reference map of metabolic brain changes in AD that lays the foundation for future mechanistic follow-up studies.

3.
Methods ; 145: 16-24, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29807109

RESUMO

Defining subtypes of complex diseases such as cancer and stratifying patient groups with the same disease but different subtypes for targeted treatments is important for personalized and precision medicine. Approaches that incorporate multi-omic data are more advantageous to those using only one data type for patient clustering and disease subtype discovery. However, it is challenging to integrate multi-omic data as they are heterogeneous and noisy. In this paper, we present Affinity Network Fusion (ANF) to integrate multi-omic data for patient clustering. ANF first constructs patient affinity networks for each omic data type, and then calculates a fused network for spectral clustering. We applied ANF to a processed harmonized cancer dataset downloaded from GDC data portal consisting of 2193 patients, and generated promising results on clustering patients into correct disease types. Moreover, we developed a semi-supervised model combining ANF and neural network for few-shot learning. In several cases, the model can achieve greater than 90% accuracy on test set with training less than 1% of the data. This demonstrates the power of ANF in learning a good representation of patients, and shows the great potential of semi-supervised learning in cancer patient clustering. .


Assuntos
Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Neoplasias/tratamento farmacológico , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Análise por Conglomerados , Humanos
4.
mSystems ; : e0130323, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240096

RESUMO

A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state of the art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel unrolling and de-confounding techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The unrolling process helps identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the de-confounding process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery, and network inference algorithms were applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases. IMPORTANCE: We have developed a suite of tools and techniques capable of inferring interactions between microbiome entities. METALICA introduces novel techniques called unrolling and de-confounding that are employed to uncover multi-omic entities considered to be confounders for some of the relationships that may be inferred using standard causal inferencing tools. To evaluate our method, we conducted tests on the inflammatory bowel disease (IBD) dataset from the iHMP longitudinal study, which we pre-processed in accordance with our previous work. From this dataset, we generated various subsets, encompassing different combinations of metagenomics, metabolomics, and metatranscriptomics datasets. Using these multi-omics datasets, we demonstrate how the unrolling process aids in the identification of putative intermediaries (genes and/or metabolites) to explain the interactions between microbes. Additionally, the de-confounding process identifies potential common causes that may give rise to spurious relationships to be inferred. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.

5.
mSystems ; 9(9): e0054524, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39191377

RESUMO

Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work, we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome and that changes in the gut microbiome are associated with variation in a class of endogenously produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbe Pelomonas, as a potent anthelmintic with activity against Pseudocapillaria tomentosa egg hatching, both in vitro and in vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlight specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection. IMPORTANCE: Intestinal helminth parasites (IHPs) impact human health globally and interfere with animal health and agricultural productivity. While anthelmintics are critical to controlling parasite infections, their efficacy is increasingly compromised by drug resistance. Recent investigations suggest the gut microbiome might mediate helminth infection dynamics. So, identifying how gut microbes interact with parasites could yield new therapeutic targets for infection prevention and management. We conducted a study using a zebrafish model of parasitic infection to identify routes by which gut microbes might impact helminth infection outcomes. Our research linked the gut microbiome to both parasite infection and to metabolites in the gut to understand how microbes could alter parasite infection. We identified a metabolite in the gut, salicylaldehyde, that is putatively produced by a gut microbe and that inhibits parasitic egg growth. Our results also point to a class of compounds, N-acyl-ethanolamines, which are affected by changes in the gut microbiome and are linked to parasite infection. Collectively, our results indicate the gut microbiome may be a source of novel anthelmintics that can be harnessed to control IHPs.


Assuntos
Microbioma Gastrointestinal , Enteropatias Parasitárias , Peixe-Zebra , Animais , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias Parasitárias/metabolismo , Enteropatias Parasitárias/parasitologia , Helmintíase/metabolismo , Helmintíase/parasitologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacologia , Aldeídos
6.
Brain Commun ; 5(2): fcad110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082508

RESUMO

Molecular subtyping of brain tissue provides insights into the heterogeneity of common neurodegenerative conditions, such as Alzheimer's disease. However, existing subtyping studies have mostly focused on single data modalities and only those individuals with severe cognitive impairment. To address these gaps, we applied similarity network fusion, a method capable of integrating multiple high-dimensional multi-omic data modalities simultaneously, to an elderly sample spanning the full spectrum of cognitive ageing trajectories. We analyzed human frontal cortex brain samples characterized by five omic modalities: bulk RNA sequencing (18 629 genes), DNA methylation (53 932 CpG sites), histone acetylation (26 384 peaks), proteomics (7737 proteins) and metabolomics (654 metabolites). Similarity network fusion followed by spectral clustering was used for subtype detection, and subtype numbers were determined by Eigen-gap and rotation cost statistics. Normalized mutual information determined the relative contribution of each modality to the fused network. Subtypes were characterized by associations with 13 age-related neuropathologies and cognitive decline. Fusion of all five data modalities (n = 111) yielded two subtypes (n S1 = 53, n S2 = 58), which were nominally associated with diffuse amyloid plaques; however, this effect was not significant after correction for multiple testing. Histone acetylation (normalized mutual information = 0.38), DNA methylation (normalized mutual information = 0.18) and RNA abundance (normalized mutual information = 0.15) contributed most strongly to this network. Secondary analysis integrating only these three modalities in a larger subsample (n = 513) indicated support for both three- and five-subtype solutions, which had significant overlap, but showed varying degrees of internal stability and external validity. One subtype showed marked cognitive decline, which remained significant even after correcting for tests across both three- and five-subtype solutions (p Bonf = 5.9 × 10-3). Comparison to single-modality subtypes demonstrated that the three-modal subtypes were able to uniquely capture cognitive variability. Comprehensive sensitivity analyses explored influences of sample size and cluster number parameters. We identified highly integrative molecular subtypes of ageing derived from multiple high dimensional, multi-omic data modalities simultaneously. Fusing RNA abundance, DNA methylation, and histone acetylation measures generated subtypes that were associated with cognitive decline. This work highlights the potential value and challenges of multi-omic integration in unsupervised subtyping of post-mortem brain.

7.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168315

RESUMO

A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state-of-the-art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel unrolling and de-confounding techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The unrolling process helps to identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the de-confounding process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery and network inference algorithms applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.

8.
Nutrients ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615700

RESUMO

Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress cancer and promote health. Evidence suggests that the gut microbiome may be essential in the production of these compounds; however, the relationship between specific microbes and the abundance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera in our samples, 29 of which were significantly differentially abundant between treatment groups. A total of 4499 metabolomic features were found to be significantly different between treatment groups (q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides. Multi-block PLS-DA and a filtering method were used to identify microbe−metabolite interactions. We identified 373 metabolites from brassica, which had strong relationships with microbes, such as members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.


Assuntos
Brassica , Microbioma Gastrointestinal , Humanos , Verduras , Microbioma Gastrointestinal/genética , Cromatografia Líquida , RNA Ribossômico 16S/genética , Promoção da Saúde , Multiômica , Espectrometria de Massas em Tandem , Brassica/química , Metabolômica/métodos
9.
Front Genet ; 13: 909714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903362

RESUMO

COVID-19 is a heterogeneous disease caused by SARS-CoV-2. Aside from infections of the lungs, the disease can spread throughout the body and damage many other tissues, leading to multiorgan failure in severe cases. The highly variable symptom severity is influenced by genetic predispositions and preexisting diseases which have not been investigated in a large-scale multimodal manner. We present a holistic analysis framework, setting previously reported COVID-19 genes in context with prepandemic data, such as gene expression patterns across multiple tissues, polygenetic predispositions, and patient diseases, which are putative comorbidities of COVID-19. First, we generate a multimodal network using the prior-based network inference method KiMONo. We then embed the network to generate a meaningful lower-dimensional representation of the data. The input data are obtained via the Genotype-Tissue Expression project (GTEx), containing expression data from a range of tissues with genomic and phenotypic information of over 900 patients and 50 tissues. The generated network consists of nodes, that is, genes and polygenic risk scores (PRS) for several diseases/phenotypes, as well as for COVID-19 severity and hospitalization, and links between them if they are statistically associated in a regularized linear model by feature selection. Applying network embedding on the generated multimodal network allows us to perform efficient network analysis by identifying nodes close by in a lower-dimensional space that correspond to entities which are statistically linked. By determining the similarity between COVID-19 genes and other nodes through embedding, we identify disease associations to tissues, like the brain and gut. We also find strong associations between COVID-19 genes and various diseases such as ischemic heart disease, cerebrovascular disease, and hypertension. Moreover, we find evidence linking PTPN6 to a range of comorbidities along with the genetic predisposition of COVID-19, suggesting that this kinase is a central player in severe cases of COVID-19. In conclusion, our holistic network inference coupled with network embedding of multimodal data enables the contextualization of COVID-19-associated genes with respect to tissues, disease states, and genetic risk factors. Such contextualization can be exploited to further elucidate the biological importance of known and novel genes for severity of the disease in patients.

10.
Semin Perinatol ; 45(6): 151456, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256961

RESUMO

The application of 'omic techniques including, but not limited to genomics/metagenomics, transcriptomics/meta-transcriptomics, proteomics/meta-proteomics, and metabolomics to generate multiple datasets from a single sample have facilitated hypothesis generation leading to the identification of biological, molecular and ecological functions and mechanisms, as well as associations and correlations. Despite their power and promise, a variety of challenges must be considered in the successful design and execution of a multi-omics study. In this review, various 'omic technologies applicable to single- and meta-organisms (i.e., host + microbiome) are described, and considerations for sample collection, storage and processing prior to data generation and analysis, as well as approaches to data storage, dissemination and analysis are discussed. Finally, case studies are included as examples of multi-omic applications providing novel insights and a more holistic understanding of biological processes.


Assuntos
Genômica , Microbiota , Humanos , Metabolômica , Proteômica
11.
mSystems ; 6(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785573

RESUMO

A key challenge in the analysis of longitudinal microbiome data is the inference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges, we developed a computational pipeline, a pipeline for the analysis of longitudinal multi-omics data (PALM), that first aligns multi-omics data and then uses dynamic Bayesian networks (DBNs) to reconstruct a unified model. Our approach overcomes differences in sampling and progression rates, utilizes a biologically inspired multi-omic framework, reduces the large number of entities and parameters in the DBNs, and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novel interactions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions.IMPORTANCE While a number of large consortia collect and profile several different types of microbiome and genomic time series data, very few methods exist for joint modeling of multi-omics data sets. We developed a new computational pipeline, PALM, which uses dynamic Bayesian networks (DBNs) and is designed to integrate multi-omics data from longitudinal microbiome studies. When used to integrate sequence, expression, and metabolomics data from microbiome samples along with host expression data, the resulting models identify interactions between taxa, their genes, and the metabolites that they produce and consume, as well as their impact on host expression. We tested the models both by using them to predict future changes in microbiome levels and by comparing the learned interactions to known interactions in the literature. Finally, we performed experimental validations for a few of the predicted interactions to demonstrate the ability of the method to identify novel relationships and their impact.

12.
Metabolites ; 10(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276350

RESUMO

The recent advancement of omic technologies provides researchers with the possibility to search for disease-associated biomarkers at the system level. The integrative analysis of data from a large number of molecules involved at various layers of the biological system offers a great opportunity to rank disease biomarker candidates. In this paper, we propose MOTA, a network-based method that uses data acquired at multiple layers to rank candidate disease biomarkers. The networks constructed by MOTA allow users to investigate the biological significance of the top-ranked biomarker candidates. We evaluated the performance of MOTA in ranking disease-associated molecules from three sets of multi-omic data representing three cohorts of hepatocellular carcinoma (HCC) cases and controls with liver cirrhosis. The results demonstrate that MOTA allows the identification of more top-ranked metabolite biomarker candidates that are shared by two different cohorts compared to traditional statistical methods. Moreover, the mRNA candidates top-ranked by MOTA comprise more cancer driver genes compared to those ranked by traditional differential expression methods.

13.
Front Immunol ; 11: 1683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849587

RESUMO

Systems biology is an approach to interrogate complex biological systems through large-scale quantification of numerous biomolecules. The immune system involves >1,500 genes/proteins in many interconnected pathways and processes, and a systems-level approach is critical in broadening our understanding of the immune response to vaccination. Changes in molecular pathways can be detected using high-throughput omics datasets (e.g., transcriptomics, proteomics, and metabolomics) by using methods such as pathway enrichment, network analysis, machine learning, etc. Importantly, integration of multiple omic datasets is becoming key to revealing novel biological insights. In this perspective article, we highlight the use of protein-protein interaction (PPI) networks as a multi-omics integration approach to unravel information flow and mechanisms during complex biological events, with a focus on the immune system. This involves a combination of tools, including: InnateDB, a database of curated interactions between genes and protein products involved in the innate immunity; NetworkAnalyst, a visualization and analysis platform for InnateDB interactions; and MetaBridge, a tool to integrate metabolite data into PPI networks. The application of these systems techniques is demonstrated for a variety of biological questions, including: the developmental trajectory of neonates during the first week of life, mechanisms in host-pathogen interaction, disease prognosis, biomarker discovery, and drug discovery and repurposing. Overall, systems biology analyses of omics data have been applied to a variety of immunology-related questions, and here we demonstrate the numerous ways in which PPI network analysis can be a powerful tool in contributing to our understanding of the immune system and the study of vaccines.


Assuntos
Genômica , Sistema Imunitário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Metabolômica , Biologia de Sistemas , Vacinas/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Integração de Sistemas , Transcriptoma
14.
Metabolites ; 9(6)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216675

RESUMO

It is not controversial that study design considerations and challenges must be addressed when investigating the linkage between single omic measurements and human phenotypes. It follows that such considerations are just as critical, if not more so, in the context of multi-omic studies. In this review, we discuss (1) epidemiologic principles of study design, including selection of biospecimen source(s) and the implications of the timing of sample collection, in the context of a multi-omic investigation, and (2) the strengths and limitations of various techniques of data integration across multi-omic data types that may arise in population-based studies utilizing metabolomic data.

15.
Theranostics ; 9(17): 4946-4958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410193

RESUMO

Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients' liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients' management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , MicroRNAs/genética , Paraganglioma/genética , Transcriptoma , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Metástase Neoplásica , Paraganglioma/metabolismo , Paraganglioma/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa