Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2209828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184096

RESUMO

Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Piperazina/farmacologia , Dopamina/uso terapêutico , Ligantes , Indazóis , Serotonina/uso terapêutico , Receptores de Serotonina , Antipsicóticos/farmacologia , Antipsicóticos/química , Receptor 5-HT1A de Serotonina/uso terapêutico
2.
Molecules ; 28(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36615341

RESUMO

A series of new congeners, 1-[2-(1-adamantyl)ethyl]-1H-benzimidazole (AB) and 1-[2-(1-adamantyl)ethyl]-4,5,6,7-tetrahalogeno-1H-benzimidazole (Hal=Cl, Br, I; tClAB, tBrAB, tIAB), have been synthesized and studied. These novel multi-target ligands combine a benzimidazole ring known to show antitumor activity and an adamantyl moiety showing anti-influenza activity. Their crystal structures were determined by X-ray, while intermolecular interactions were studied using topological Bader's Quantum Theory of Atoms in Molecules, Hirshfeld Surfaces, CLP and PIXEL approaches. The newly synthesized compounds crystallize within two different space groups, P-1 (AB and tIAB) and P21/c (tClAB and tBrAB). A number of intramolecular hydrogen bonds, C-H⋯Hal (Hal=Cl, Br, I), were found in all halogen-containing congeners studied, but the intermolecular C-H⋯N hydrogen bond was detected only in AB and tIAB, while C-Hal⋯π only in tClAB and tBrAB. The interplay between C-H⋯N and C-H⋯Hal hydrogen bonds and a shift from the strong (C-H⋯Cl) to the very weak (C-H⋯I) attractive interactions upon Hal exchange, supplemented with Hal⋯Hal overlapping, determines the differences in the symmetry of crystalline packing and is crucial from the biological point of view. The hypothesis about the potential dual inhibitor role of the newly synthesized congeners was verified using molecular docking and the congeners were found to be pharmaceutically attractive as Human Casein Kinase 2, CK2, inhibitors, Membrane Matrix 2 Protein, M2, blockers and Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, inhibitors. The addition of adamantyl moiety seems to broaden and modify the therapeutic indices of the 4,5,6,7-tetrahalogeno-1H-benzimidazoles.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Raios X , Simulação de Acoplamento Molecular , Caseína Quinase II , Benzimidazóis/farmacologia , Ligantes , Proteínas de Membrana
3.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530327

RESUMO

While selective inhibition is one of the key assets for a small molecule drug, many diseases can only be tackled by simultaneous inhibition of several proteins. An example where achieving selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors. We investigated the possibility to identify novel small molecule ligands with pre-defined binding profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands originating from these calculations were assayed to determine their experimental binding profiles. Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets. Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed our target choice and in silico strategy based on these findings, with a particular emphasis on the hit rates that can be expected from a given target combination. To that end, we supplemented the structure-based docking calculations with bioinformatic considerations of binding pocket sequence and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results provide a multi-faceted picture of how pocket space can determine the success of docking in multi-target drug discovery efforts.


Assuntos
Simulação de Acoplamento Molecular/métodos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Simulação por Computador , Descoberta de Drogas , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade
4.
Molecules ; 26(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435264

RESUMO

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos , Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Diabetes Mellitus/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208297

RESUMO

Neurodegenerative diseases, e.g., Alzheimer's disease (AD), are a key health problem in the aging population. The lack of effective therapy and diagnostics does not help to improve this situation. It is thought that ligands influencing multiple but interconnected targets can contribute to a desired pharmacological effect in these complex illnesses. Histamine H3 receptors (H3Rs) play an important role in the brain, influencing the release of important neurotransmitters, such as acetylcholine. Compounds blocking their activity can increase the level of these neurotransmitters. Cholinesterases (acetyl- and butyrylcholinesterase) are responsible for the hydrolysis of acetylcholine and inactivation of the neurotransmitter. Increased activity of these enzymes, especially butyrylcholinesterase (BuChE), is observed in neurodegenerative diseases. Currently, cholinesterase inhibitors: donepezil, rivastigmine and galantamine are used in the symptomatic treatment of AD. Thus, compounds simultaneously blocking H3R and inhibiting cholinesterases could be a promising treatment for AD. Herein, we describe the BuChE inhibitory activity of H3R ligands. Most of these compounds show high affinity for human H3R (Ki < 150 nM) and submicromolar inhibition of BuChE (IC50 < 1 µM). Among all the tested compounds, 19 (E153, 1-(5-([1,1'-biphenyl]-4-yloxy)pentyl)azepane) exhibited the most promising in vitro affinity for human H3R, with a Ki value of 33.9 nM, and for equine serum BuChE, with an IC50 of 590 nM. Moreover, 19 (E153) showed inhibitory activity towards human MAO B with an IC50 of 243 nM. Furthermore, in vivo studies using the Passive Avoidance Task showed that compound 19 (E153) effectively alleviated memory deficits caused by scopolamine. Taken together, these findings suggest that compound 19 can be a lead structure for developing new anti-AD agents.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Aminas/química , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Monoaminoxidase/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Butirilcolinesterase/metabolismo , Linhagem Celular , Inibidores da Colinesterase/síntese química , Humanos , Ligantes , Masculino , Camundongos , Modelos Animais , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Receptores Histamínicos H3/química , Relação Estrutura-Atividade
6.
Bioorg Chem ; 97: 103662, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086055

RESUMO

A series of novel 4-butyl-arylpiperazine-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives were synthesized and evaluated for their 5-HT1A/D2 receptor affinity and serotonin reuptake inhibition. The compounds exhibited high affinity for the 5-HT1A receptor, (especially 4dKi = 0.4 nM) which depended on the substitution pattern at the phenylpiperazine moiety. From this series screen, compound 4c emerged with promising mixed receptor profiles for the 5-HT1A/D2 receptors and the serotonin transporter (Ki = 1.3 nM, 182 nM and 64 nM, respectively).


Assuntos
Pirrolidinas/química , Pirrolidinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Dopamina D2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Células CHO , Cricetulus , Descoberta de Drogas , Humanos , Pirrolidinas/síntese química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/síntese química
7.
Bioorg Med Chem ; 25(14): 3638-3648, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28529043

RESUMO

A series of azinesulfonamides of long-chain arylpiperazine derivatives with semi-rigid alkylene spacer was designed, synthesized, and biologically evaluated using in vitro methods for their affinity for dopaminergic D2 and serotoninergic 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 receptors. Docking to homology models revealed a possible halogen bond formation in complexes of the most potent ligands and the target receptors. The study allowed for the identification of compound 5-({4-(2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl)piperidin-1-yl}sulfonyl)quinoline (21), which behaved as D2, 5-HT1A and 5-HT7 receptor antagonist. In preliminary in vivo studies, compound 21 displayed distinct antipsychotic properties in the MK-801-evoked hyperactivity test in mice at a dose of 10mg/kg, and exerted antidepressant-like effect in a forced swim test in mice (MED=0.625mg/kg, i.p.).


Assuntos
Antidepressivos/química , Antipsicóticos/química , Piperazinas/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/metabolismo , Sulfonamidas/química , Animais , Antidepressivos/síntese química , Antidepressivos/farmacologia , Antipsicóticos/síntese química , Antipsicóticos/farmacologia , Sítios de Ligação , Maleato de Dizocilpina/farmacologia , Halogênios/química , Concentração Inibidora 50 , Ligantes , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Atividade Motora/efeitos dos fármacos , Piperazinas/síntese química , Piperazinas/farmacologia , Estrutura Terciária de Proteína , Receptor 5-HT1A de Serotonina/química , Receptores de Dopamina D2/química , Receptores de Serotonina/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia
8.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559010

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.

9.
Curr Med Chem ; 29(17): 2952-2978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34375176

RESUMO

Despite the countless efforts made in the last decades, malaria and neglected tropical diseases remain a high-impact health problem in developing countries. Malaria is one of the most severe parasitic diseases, with over 200 million cases and 400,000 deaths in 2019. Parasitic diseases caused by trypanosomatidae, namely Human African Trypanosomiasis, Chagas disease, and leishmaniasis, register the highest rates of mortality amongst all the neglected tropical diseases. In this scenario, chemotherapy remains the first strategy, which aims to control and eliminate these diseases. However, the use of outdated, unsafe, and poorly effective drugs, together with the onset of resistance, prompted the researchers to identify new and valid targets. The innovative idea, aimed at the development of multi-target ligands addressing two different targets playing key roles in parasite survival, could represent a valuable strategy. Thanks to this approach, the wellknown limitations characterizing the antiparasitic drugs, such as toxicity, rapid resistance onset and narrow spectrum of action, could be overcome. In this review, we now describe the most recent multi-target ligands endowed with antiparasitic effects reported in the literature, focusing our attention on their binding with the targets, inhibitory activities, and potential therapeutic applications.


Assuntos
Leishmaniose , Malária , Parasitos , Doenças Parasitárias , Animais , Antiparasitários/uso terapêutico , Humanos , Leishmaniose/tratamento farmacológico , Ligantes , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Doenças Parasitárias/tratamento farmacológico
10.
ChemistryOpen ; 10(12): 1177-1185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633754

RESUMO

The design of multi-target ligands has become an innovative approach for the identification of effective therapeutic treatments against complex diseases, such as cancer. Recent studies have demonstrated that the combined inhibition of Hsp90 and B-Raf provides synergistic effects against several types of cancers. Moreover, it has been reported that PDHK1, which presents an ATP-binding pocket similar to that of Hsp90, plays an important role in tumor initiation, maintenance and progression, participating also to the senescence process induced by B-Raf oncogenic proteins. Based on these premises, the simultaneous inhibition of these targets may provide several benefits for the treatment of cancer. In this work, we set up a design strategy including the assembly and integration of molecular fragments known to be important for binding to the Hsp90, PDHK1 and B-Raf targets, aided by molecular docking for the selection of a set of compounds potentially able to exert Hsp90-B-Raf-PDHK1 multi-target activities. The designed compounds were synthesized and experimentally validated in vitro. According to the in vitro assays, compounds 4 a, 4 d and 4 e potently inhibited Hsp90 and moderately inhibited the PDHK1 kinase. Finally, molecular dynamics simulations were performed to provide further insights into the structural basis of their multi-target activity.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico
11.
J Biomol Struct Dyn ; 39(9): 3285-3299, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32362218

RESUMO

Cyclin-Dependent Kinase 2 (CDK2) and Vascular Endothelial Growth Factor Receptor (VEGFR2) have largely been considered as attractive targets for developing anticancer agents. However, there is no dual inhibitor commercially available in the market that interacts simultaneously with the allosteric back pocket of these enzymes. We applied a combined computational strategy that started with the generation of two overlapping pharmacophore models of both kinases at 'inactive' conformation. Next, several virtual libraries of natural products, including the databases TCM (Traditional Chinese Medicine), UEFS (Universidade Estadual de Feira de Santana), NuBBE (Nuclei of Bioassays, Biosynthesis, and Ecophysiology of Natural Products) and AfroDb (African Medicinal Plants Database) were deconstructed using a non-extensive version of the approach RECAP (retrosynthetic combinatorial analysis procedure). These natural-product-derived fragments (NPDFs) were screened and merged into drug-sized compounds, which were filtered by Lipinski's Rule-of-five (Ro5) and docking. As a result, two pharmacophore models, namely Hypo1 and Hypo2, were developed with an accuracy of 0.94 and 0.84, respectively. Deconstruction of natural products produced a set of 16655 unique non-extensive NPDFs that were screened against both pharmacophore models. Finally, after merging, Ro5-filtering and docking, we obtained a set of 20 hit compounds predicted to be diverse, developable, synthesizable and potent. The computational strategy proved successful to find virtual candidates of kinase inhibitors and therefore contributes to the identification of innovative multi-target compounds with potential anticancer activity. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Produtos Biológicos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Simulação de Acoplamento Molecular
12.
Carbohydr Res ; 499: 108220, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341220

RESUMO

Diabetes mellitus is a multifactorial disease, which is frequently complicated by the development of hyperglycaemia-induced chronic complications. The therapy of diabetes mellitus often requires combinations of two or more drugs in order both to control glycaemic levels and to prevent hyperglycaemia-induced dangerous affairs. The application of multi-target agents, which are able to control simultaneously several pathogenic mechanisms, represents a useful alternative and, in fact, their discovery is a pursued aim of the research. Some (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic acids, which we had previously reported as inhibitors of selected enzymes critically implicated in diabetes mellitus, were tested against pancreatic α-amylase and intestinal α-glucosidase. These enzymes catalyse the hydrolysis of dietary oligo- and polysaccharides into monosaccharides and, consequently, are responsible for postprandial hyperglycaemia; therefore, their inhibition is one of the possible strategies to control glycaemic levels in diabetes mellitus. In addition, we investigated the aggregation tendency of the tested compounds, through direct and indirect methods, in order to evaluate the mechanism of their multiple action and discover if aggregation may contribute to the inhibition of the target enzymes. Overall, compounds 1, 3 and 4 exhibited the most favourable profile since they were shown to act as multi-target inhibitors of enzymes involved in pathways related to diabetes mellitus, without producing aggregates even at high micromolar concentrations and, therefore, can be promising agents for further developments.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , alfa-Amilases Pancreáticas/antagonistas & inibidores , Tiazolidinas/farmacologia , Diabetes Mellitus/metabolismo , Inibidores de Glicosídeo Hidrolases/efeitos adversos , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/química , Ligantes , Estrutura Molecular , alfa-Amilases Pancreáticas/metabolismo , Tiazolidinas/efeitos adversos , Tiazolidinas/química
13.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681211

RESUMO

The paradigm of ligand-receptor interactions postulated as "one compound-one target" has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget activity on the FFA3/GPR41, FFA2/GPR43, and HCA2/GPR109A receptors. Hexahydroquinoline derivatives have been known to exhibit characteristic activity as FFA3/GPR41 ligands, but during this study we observed their impact on FFA2/GPR43 and HCA2/GPR109A receptors as well as their electron-donating activity. Oxopyranopyrimidine and thioxopyranopyrimidine type compounds have been studied as ligands of the HCA2/GPR109A receptor; nevertheless, they exhibited equal or higher activity towards FFA3/GPR41 and FFA2/GPR43 receptors. S-Alkyl derivatives of pyranopyrimidines that have not yet been studied as ligands of GPCRs were more active towards HCA2/GPR109A and FFA3/GPR41 receptors than towards FFA2/GPR43. Representative compounds from each synthesized series were able to decrease the lipopolysaccharide-induced gene expression and secretion of proinflammatory cytokines (IL-6, TNF-α) and of a chemokine (MCP-1) in THP-1 macrophages, resembling the effect of HCA2/GPR109A ligand niacin and the endogenous ligand propionate. This study revealed groups of compounds possessing multitarget activity towards several receptors. The obtained data could be useful for further development of multitarget ligands.

14.
J Cheminform ; 9(1): 67, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-29290010

RESUMO

Compounds designed to display polypharmacology may have utility in treating complex diseases, where activity at multiple targets is required to produce a clinical effect. In particular, suitable compounds may be useful in treating neurodegenerative diseases by promoting neuronal survival in a synergistic manner via their multi-target activity at the adenosine A1 and A2A receptors (A1R and A2AR) and phosphodiesterase 10A (PDE10A), which modulate intracellular cAMP levels. Hence, in this work we describe a computational method for the design of synthetically feasible ligands that bind to A1 and A2A receptors and inhibit phosphodiesterase 10A (PDE10A), involving a retrosynthetic approach employing in silico target prediction and docking, which may be generally applicable to multi-target compound design at several target classes. This approach has identified 2-aminopyridine-3-carbonitriles as the first multi-target ligands at A1R, A2AR and PDE10A, by showing agreement between the ligand and structure based predictions at these targets. The series were synthesized via an efficient one-pot scheme and validated pharmacologically as A1R/A2AR-PDE10A ligands, with IC50 values of 2.4-10.0 µM at PDE10A and Ki values of 34-294 nM at A1R and/or A2AR. Furthermore, selectivity profiling of the synthesized 2-amino-pyridin-3-carbonitriles against other subtypes of both protein families showed that the multi-target ligand 8 exhibited a minimum of twofold selectivity over all tested off-targets. In addition, both compounds 8 and 16 exhibited the desired multi-target profile, which could be considered for further functional efficacy assessment, analog modification for the improvement of selectivity towards A1R, A2AR and PDE10A collectively, and evaluation of their potential synergy in modulating cAMP levels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa