Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Mol Pharm ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374616

RESUMO

The supramolecular drug delivery systems (SDDSs) based on host-guest recognition through noncovalent interactions, capable of responsive behavior and dynamic switching to external stimuli, have attracted considerable attention in cancer therapy. In this study, a targeted dual-functional drug delivery system was designed and synthesized. A hydrophilic macrocyclic host molecule (acyclic cucurbit[n]uril ACB) was modified with folic acid (FA) as a targeting ligand. The guest molecule consists of a disulfide bond attached to adamantane (DA) and cannabidiol (CBD) at both ends of the response element of glutathione. Recognition and self-assembly of host and guest molecules successfully functionalize supramolecular nanomicelles (SNMs), targeting cancer cells and releasing drugs in a high glutathione environment. The interactions between host and guest molecules were investigated by using nuclear magnetic resonance (NMR), fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the nanostructure of the SNMs. Experimentation with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) demonstrated the responsiveness of SNMs to glutathione (GSH). In vitro cytotoxicity assays demonstrated that SNMs had a greater targeting efficacy for four types of cancer cells (HeLa, HCT-116, A549, and HepG2) compared to normal 293T cells. Cellular uptake studies revealed that HeLa cells more readily absorbed SNMs, leading to their accumulation in the tumor cell cytoplasm. Fluorescence colocalization assays verified that SNMs efficiently accumulated in organelles related to energy metabolism and signaling, including mitochondria and the endoplasmic reticulum, affecting cellular metabolic death. Both flow cytometry and confocal nuclear staining assays confirmed that SNMs effectively induced apoptosis over time, ultimately resulting in the death of cancer cells. These findings demonstrate that SNMs exhibit excellent targeting ability, responsiveness, high bioavailability, and stability, suggesting significant potential in drug delivery applications.

2.
J Nanobiotechnology ; 22(1): 420, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014462

RESUMO

Triple negative breast cancer (TNBC) has the characteristics of low immune cell infiltration, high expression of tumor programmed death ligand 1 (PD-L1), and abundant cancer stem cells. Systemic toxicity of traditional chemotherapy drugs due to poor drug selectivity, and chemotherapy failure due to tumor drug resistance and other problems, so it is particularly important to find new cancer treatment strategies for TNBC with limited treatment options. Both the anti-tumor natural drugs curcumin and ginsenoside Rg3 can exert anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells, reducing PD-L1 expression, and reducing cancer stem cells. However, they have the disadvantages of poor water solubility, low bioavailability, and weak anti-tumor effect of single agents. We used vinyl ether bonds to link curcumin (Cur) with N-O type zwitterionic polymers and at the same time encapsulated ginsenoside Rg3 to obtain hyperbranched zwitterionic drug-loaded micelles OPDEA-PGED-5HA@Cur@Rg3 (PPH@CR) with pH response. In vitro cell experiments and in vivo animal experiments have proved that PPH@CR could not only promote the maturation of dendritic cells (DCs) and increase the CD4+ T cells and CD8+ T cells by inducing ICD in tumor cells but also reduce the expression of PD-L1 in tumor tissues, and reduce cancer stem cells and showed better anti-tumor effects and good biological safety compared with free double drugs, which is a promising cancer treatment strategy.


Assuntos
Antineoplásicos , Antígeno B7-H1 , Curcumina , Ginsenosídeos , Animais , Curcumina/farmacologia , Curcumina/química , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Feminino , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Micelas , Camundongos Endogâmicos BALB C , Polímeros/química , Polímeros/farmacologia , Células Dendríticas/efeitos dos fármacos , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Portadores de Fármacos/química , Óxidos/química , Óxidos/farmacologia
3.
J Therm Biol ; 123: 103905, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38941825

RESUMO

Heat stress poses a significant challenge to sheep farming in arid and semi-arid regions, impacting growth performance, health, and physiological responses. While sheep have innate mechanisms to manage heat stress, prolonged exposure impairs their performance and health. This study evaluated the influence of varying doses of Curcumin Nano-Micelle (CNM) on heat-stressed fattening lambs in northeastern Iran over three months, examining the relationship between CNM doses and growth performance, feeding behavior, physiological responses, immune function, and antioxidant status. Thirty-two crossbred male lambs were included in a completely randomized design with four treatments and eight replications. The experimental treatments were as follows: 1) CTRL: No dietary inclusion of CNM, (control group); 2) T20: Dietary inclusion of 20 mg of CNM per head per day; 3) T40: Dietary inclusion of 40 mg of CNM per head per day; and 4) T80: Dietary inclusion of 80 mg of CNM per head per day. The results revealed that dietary supplementation with 20 and 40 mg of CNM significantly improved live body weight, weight gain, average daily gain (ADG), and feed conversion ratio (FCR) compared to the control treatment. Regression analysis demonstrated quadratic models between growth performance parameters and the Temperature-Humidity Index (THI), indicating a correlation between CNM doses and the animals' responses to heat stress. Regarding eating behavior, CNM doses of 40 and 80 mg/day significantly reduced eating time while increasing ruminating time. Blood analysis indicated significant reductions in glucose levels across all treatments, with T40 significantly reducing both cholesterol and triglyceride (TG) levels. Additionally, CNM supplementation decreased serum malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, indicating enhanced antioxidant status. Physiological responses were influenced by CNM, notably reducing rectal temperature (RT), skin temperature (ST), respiration rate (RR), while pulse rate (PR) increased across various time intervals, particularly in the T80 group. This study demonstrates that CNM supplementation can enhance performance, physiological responses, and antioxidant status in heat-stressed fattening lambs, highlighting its potential to mitigate heat stress effects in sheep farming.


Assuntos
Mudança Climática , Curcumina , Suplementos Nutricionais , Resposta ao Choque Térmico , Animais , Masculino , Curcumina/farmacologia , Curcumina/administração & dosagem , Resposta ao Choque Térmico/efeitos dos fármacos , Ovinos/fisiologia , Micelas , Transtornos de Estresse por Calor/veterinária , Transtornos de Estresse por Calor/prevenção & controle , Transtornos de Estresse por Calor/tratamento farmacológico , Umidade , Ração Animal/análise , Antioxidantes
4.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893567

RESUMO

Curcumin (Cur) is a phytochemical with various beneficial properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its hydrophobicity, poor bioavailability, and stability limit its application in many biological approaches. In this study, a novel amphiphilic chitosan wall material was synthesized. The process was carried out via grafting chitosan with succinic anhydride (SA) as a hydrophilic group and deoxycholic acid (DA) as a hydrophobic group; 1H-NMR, FTIR, and XRD were employed to characterize the amphiphilic chitosan (CS-SA-DA). Using a low-cost, inorganic solvent-based procedure, CS-SA-DA was self-assembled to load Cur nanomicelles. This amphiphilic polymer formed self-assembled micelles with a core-shell structure and a critical micelle concentration (CMC) of 0.093 mg·mL-1. Cur-loaded nanomicelles were prepared by self-assembly and characterized by the Nano Particle Size Potential Analyzer and transmission electron microscopy (TEM). The mean particle size of the spherical Cur-loaded micelles was 770 nm. The drug entrapment efficiency and loading capacities were up to 80.80 ± 0.99% and 19.02 ± 0.46%, respectively. The in vitro release profiles of curcumin from micelles showed a constant release of the active drug molecule. Cytotoxicity studies and toxicity tests for zebrafish exhibited the comparable efficacy and safety of this delivery system. Moreover, the results showed that the entrapment of curcumin in micelles improves its stability, antioxidant, and anti-inflammatory activity.


Assuntos
Antioxidantes , Quitosana , Curcumina , Micelas , Curcumina/farmacologia , Curcumina/química , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas/química , Animais , Peixe-Zebra , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Tensoativos/química
5.
J Sci Food Agric ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210730

RESUMO

BACKGROUND: Curcumin is widely known for its antioxidant and anti-inflammatory properties, but its mechanism of action in mitigating oxidative stress injury in brain vascular endothelial cells remains unclear. Due to the poor bioavailability of curcumin, it is challenging to achieve effective concentrations at the target sites. Nano-micelles are known for their ability to improve the solubility, stability, and bioavailability of hydrophobic compounds like curcumin. This study investigated the effects and mechanisms of free curcumin and curcumin embedded in nano-micelles (M(Cur)) on oxidative stress-induced injury in bEnd.3 cells. RESULTS: At a protective concentration of 10 µg mL-1, micellar curcumin was better able to recover the morphology of bEnd.3 cells under oxidative stress while increasing cell viability, restoring mitochondrial membrane electrical potential, and effectively inhibiting reactive oxygen species generation with a positive cell rate of 2.21%. These results indicate that curcumin significantly improves H2O2-induced oxidative stress damage in endothelial cells by maintaining the cellular antioxidant balance. CONCLUSION: This study adds to knowledge regarding the role of nano-micelles in curcumin intervention for endothelial cell oxidative damage and provides insights for the development of curcumin-based dietary supplements. © 2024 Society of Chemical Industry.

6.
Saudi Pharm J ; 32(5): 102046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577487

RESUMO

Glipizide; an insulin secretagogue belonging to the sulfonylurea class, is a widely used antidiabetic drug for managing type 2 diabetes. However, the need for life-long administration and repeated doses poses challenges in maintaining optimal blood glucose levels. In this regard, orally active sustained-release nano-formulations can be a better alternative to traditional antidiabetic formulations. The present study explored an innovative approach by formulating orally active sustained-release nano-micelles using the amphiphilic lauric acid-conjugated-F127 (LAF127) block copolymer. LAF127 block copolymer was synthesized through esterification and thoroughly characterized before being employed to develop glipizide-loaded nano-micelles (GNM) via the thin-film hydration technique. The optimized formulation exhibited mean particle size of 341.40 ± 3.21 nm and depicted homogeneous particle size distribution with a polydispersity index (PDI) < 0.2. The formulation revealed a surface charge of -17.11 ± 6.23 mV. The in vitro release studies of glipizide from developed formulation depicted a sustained release profile. Drug loaded micelles exhibited a substantial reduction in blood glucose levels in diabetic rats for a duration of up to 24 h. Notably, neither the blank nano-micelles of LAF127 nor the drug loaded micelles manifested any indications of toxicity in healthy rats. This study provides an insight on suitability of synthesized LAF127 block copolymer for development of effective oral drug delivery systems for anti-diabetic activity without any significant adverse effects.

7.
Biochem Biophys Res Commun ; 652: 55-60, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36809705

RESUMO

Preparation of a supermacromolecular photosensitizer that can stay in the tumor site and exhibits high photoconversion efficiency is useful for improving the efficacy of tumor photodynamic therapy (PDT). In this paper, we prepared tetratroxaminobenzene porphyrin (TAPP) loaded biodegradable silk nanospheres (NSs) and characterized their morphology, optical properties and the singlet oxygen-generating capacity. On this basis, the effect of in vitro photodynamic killing efficacy by as-prepared nanometer micelles was evaluated and the tumor retention ability and tumor killing effect of the nanometer micelles were verified by the co-culture of photosensitizer micelle and tumor cells. The results show that tumor cells were killed well under 660 nm laser irradiation even at a lower concentration of as-prepared TAPP NSs. In addition, due to the excellent safety of as-prepared nanomicelle, they exhibit great potential applications in improved tumor PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Micelas , Oxigênio Singlete , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
8.
Small ; 19(50): e2305101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635105

RESUMO

Design of effective nanodrugs to modulate the immunosuppression of tumor microenvironment is a desirable approach to boost the clinical tumor-therapeutic effect. Supramolecular nanomicelles PolyMN-TO-8, which are constructed by self-assembling supramolecular host MTX-MPEG2000, guest NPX-2S, and TO-8 through hydrophobic forces, have excellent stability and responsiveness to carboxylesterase and glutathione in turn. In vivo studies validate that PolyMN-TO-8 enable to trigger pyroptosis-mediated immunogenic cell death under laser, avoiding the occurrence of immune dysregulation simultaneously. This therapeutic mode strengthens dendritic cells' maturation and accelerates the infiltration of CD8+ T cells into tumors through moderate activation of pro-inflammatory factors with elimination of immune-escape, ultimately making the tumor inhibition rate as high as 87.44% via synergistic functions of photodynamic therapy, photothermal therapy, chemotherapy, etc. The loss of immune-escape quickens the infiltration of CD8+ T cells into lungs, and further eschews the generation of tumor nodules in it. Chemotherapy, the release of interferon-γ, and immune memory effect also strengthen the defense against metastasis. The generation of O2 catalyzed by PolyMN-TO-8 under laser is indispensable for tumor metastasis inhibition undoubtedly.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos T CD8-Positivos , Piroptose , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia
9.
Small ; 19(9): e2205531, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549896

RESUMO

Understanding the direct interaction of nanostructures per se with biological systems is important for biomedical applications. However, whether nanostructures regulate biological systems by targeting specific cellular proteins remains largely unknown. In the present work, self-assembling nanomicelles are constructed using small-molecule oleanolic acid (OA) as a molecular template. Unexpectedly, without modifications by functional ligands, OA nanomicelles significantly activate cellular proteasome function by directly binding to 20S proteasome subunit alpha 6 (PSMA6). Mechanism study reveals that OA nanomicelles interact with PSMA6 to dynamically modulate its N-terminal domain conformation change, thereby controlling the entry of proteins into 20S proteasome. Subsequently, OA nanomicelles accelerate the degradation of several crucial proteins, thus potently driving cancer cell pyroptosis. For translational medicine, OA nanomicelles exhibit a significant anticancer potential in tumor-bearing mouse models and stimulate immune cell infiltration. Collectively, this proof-of-concept study advances the mechanical understanding of nanostructure-guided biological effects via their inherent capacity to activate proteasome.


Assuntos
Nanoestruturas , Neoplasias , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Piroptose , Citoplasma/metabolismo , Micelas , Nanoestruturas/química
10.
Chembiochem ; 24(16): e202300323, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169724

RESUMO

Photodynamic therapy (PDT) is one common ROS-generating therapeutic method with high tumor selectivity and low side effects. But the GSH-upregulation often alleviates its therapeutic efficiency. Here, we proposed a new strategy of jointly depleting GSH to enhance the therapeutic effect of PDT by preparing a nanomicelle by self-assembly method from GSH-activated photosensitizer DMT, curcumin, and amphiphilic polymer TPGS.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Curcumina/farmacologia , Glutationa , Linhagem Celular Tumoral
11.
Mol Pharm ; 20(6): 3009-3019, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093958

RESUMO

Multifunctionalized Chitosan-based polymeric micelles were used to deliver pVGF to the brain. VGF (non-acronymic) plays significant roles in neurogenesis and learning as well as synaptic and cognitive functions. Therefore, VGF gene therapy could be a better approach in developing effective therapeutics against Alzheimer's disease. Multifunctionalized chitosan polymeric micelles were developed by grafting oleic acid (OA) on the chitosan (CS) skeleton followed by penetratin (PEN) and mannose (MAN) conjugation. The OA-g-CS-PEN-MAN graft polymer formed cationic nanomicelles in an aqueous medium and polyplexed with pVGF. The polymeric micelles were nontoxic and cationic in charge and had an average hydrodynamic diameter of 199.8 ± 15.73 nm. Qualitative in vitro transfection efficiency of OA-g-CS-PEN-MAN/pGFP polyplex was investigated in bEnd.3, primary neurons, and astrocyte cells. In vivo transfection efficiency of OA-g-CS-PEN-MAN/pVGF polyplexes was analyzed in C57BL6/J mice after intranasal administration for 7 days. The VGF expression levels in primary astrocytes and neurons after OA-g-CS-PEN-MAN/pVGF treatment were 2.4 ± 0.24 and 1.49 ± 0.02 pg/µg of protein, respectively. The VGF expression in the OA-g-CS-PEN-MAN/pVGF polyplex-treated animal group was 64.9 ± 12.7 pg/mg of protein, significantly higher (p < 0.01) than that of the unmodified polymeric micelles. The in vivo transfection outcomes revealed that the developed multifunctionalized OA-g-CS-PEN-MAN polymeric micelles could effectively deliver pVGF to the brain, transfect brain cells, and express VGF in the brain after noninvasive intranasal administration.


Assuntos
Doença de Alzheimer , Quitosana , Camundongos , Animais , Micelas , Quitosana/metabolismo , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Polímeros/metabolismo , Encéfalo/metabolismo , Ácido Oleico/metabolismo
12.
Connect Tissue Res ; 64(6): 555-568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37458277

RESUMO

PURPOSE/AIM OF THE STUDY: Curcumin is the active substance of turmeric and has been shown to enhance the healing potential of burn wounds. However, its high hydrophobicity and rapid degradability are great challenges for its clinical applications. The development of new curcumin formulations may provide a potential solution to these issues. METHODS AND RESULTS: In this study, we investigated the use of curcumin nanomicelles for wound dressing and evaluated their effects on fibroblast migration and proliferation in vitro. We found that the application of curcumin nanomicelles to the wounds significantly improved wound contraction and increased the expression of transforming growth factor-1 and basic fibroblast growth factor at day 14 of the healing process. Furthermore, curcumin nanomicelles reduced the expression of interleukin-1 at days 7 and 14 post-wounding. Histopathological analysis revealed that the curcumin nanomicelles-treated burn wounds exhibited more organized granulation tissue, improved angiogenesis, and enhanced re-epithelialization. Additionally, the curcumin treatment led to increased hydroxyproline content and enhanced TGF-ß1 expression level in the wounds. The in vitro studies also demonstrated that the curcumin nanomicelles induced proliferation and migration of fibroblasts. CONCLUSION: Overall, our findings suggest that curcumin nanomicelles can be a promising candidate for the treatment of burn wounds.


Assuntos
Queimaduras , Curcumina , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Cicatrização , Queimaduras/patologia , Movimento Celular
13.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005331

RESUMO

OBJECTIVE: The objective of this study was to examine the preparation process of DSPE-PEG-C60/NCTD micelles and assess the impact of fullerenol (C60)-modified micelles on the nephrotoxicity and antitumor activity of NCTD. METHOD: The micelles containing NCTD were prepared using the ultrasonic method and subsequently optimized and characterized. The cytotoxicity of micelles loaded with NCTD was assessed using the CCK-8 method on human hepatoma cell lines HepG2 and BEL-7402, as well as normal cell lines HK-2 and L02. Acridine orange/ethidium bromide (AO/EB) double staining and flow cytometry were employed to assess the impact of NCTD-loaded micelles on the apoptosis of the HK-2 cells and the HepG2 cells. Additionally, JC-1 fluorescence was utilized to quantify the alterations in mitochondrial membrane potential. The generation of reactive oxygen species (ROS) following micelle treatment was determined through 2',7'-dichlorofluorescein diacetate (DCFDA) staining. RESULTS: The particle size distribution of the DSPE-PEG-C60/NCTD micelles was determined to be 91.57 nm (PDI = 0.231). The zeta potential of the micelles was found to be -13.8 mV. The encapsulation efficiency was measured to be 91.9%. The in vitro release behavior of the micelles followed the Higuchi equation. Cellular experiments demonstrated a notable decrease in the toxicity of the C60-modified micelles against the HK-2 cells, accompanied by an augmented inhibitory effect on cancer cells. Compared to the free NCTD group, the DSPE-PEG-C60 micelles exhibited a decreased apoptosis rate (12%) for the HK-2 cell line, lower than the apoptosis rate observed in the NCTD group (36%) at an NCTD concentration of 75 µM. The rate of apoptosis in the HepG2 cells exhibited a significant increase (49%), surpassing the apoptosis rate observed in the NCTD group (24%) at a concentration of 150 µM NCTD. The HK-2 cells exhibited a reduction in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM) upon exposure to C60-modified micelles compared to the NCTD group. CONCLUSIONS: The DSPE-PEG-C60/NCTD micelles, as prepared in this study, demonstrated the ability to decrease cytotoxicity and ROS levels in normal renal cells (HK-2) in vitro. Additionally, these micelles showed an enhanced antitumor activity against human hepatocellular carcinoma cells (HepG2, BEL-7402).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Micelas , Espécies Reativas de Oxigênio/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Apoptose
14.
Pak J Med Sci ; 39(1): 236-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694750

RESUMO

Objective: To investigate the effect of hypertension on the (enhanced permeability and retention, EPR) effect induced by polymer nanomicelles in renal cell carcinoma in vitro. Methods: A total of 80 patients with renal cell carcinoma treated at the Department of Urology Surgery in the Dept. of Urology of the Affiliated Hospital of Hebei University from Oct. 2019 to Oct. 2020, were analyzed retrospectively. The hypertension group (experimental group) included 40 patients, and the normal blood pressure group (control group) included 40 patients. The diagnosis of renal clear cell carcinoma was confirmed by preoperative auxiliary examinations, such as ultrasonography and CT combined with postoperative pathological analysis. All patients underwent laparoscopic radical nephrectomy for renal cell carcinoma. Polymer nanomicelles (loaded with prolonium iodide) were perfused into the resected kidney specimens within the specified time. The iodine enrichment of polymer nanomicelles in renal tumors was assessed by CT scanning. The peak EPR effect and the time to the peak were statistically compared between the two groups. Results: No significant differences were found in age, sex, location of kidney disease, tumor location or tumor size between the two groups (p> 0.05). The peak (χ̄±S) of the EPR effect in experimental group was 3.60±0.95 ug/cm3 and 3.01±0.96 ug/cm3 in control group, respectively. There was significant difference between the two groups (p< 0.05). The time to the peak of the EPR effect was 3.76±0.75 h in experimental group and 3.82±0.93 hour in control group, respectively. No statistically significant difference was found in the time to the peak of the EPR effect between the two groups (p> 0.05). Conclusion: Hypertension has a certain effect on the EPR effect induced by polymer nanomicelles in renal cell carcinoma in vitro.

15.
Chem Rec ; 22(12): e202200152, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103616

RESUMO

Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Distribuição Tecidual , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proliferação de Células , Sistemas de Liberação de Medicamentos
16.
Pharmacol Res ; 181: 106263, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597383

RESUMO

Glomerulonephritis is a key factor in leading to end-stage renal disease. Mesangial cell proliferation and macrophage infiltration are two prominent features linked in a vicious circle mechanism for glomerulonephritis progression. Herein, a novel biomimetic pH-sensitive nanomicelle (MM/HA-DXM) was constructed to synergize hyaluronic acid (HA)-activated macrophage phenotypic remodeling and dexamethasone (DXM)-mediated mesangial cell killing for precise treatment of glomerulonephritis. Owing to the camouflaged coating with endogenous macrophage membrane (MM), MM/HA-DXM could escape from RES phagocytosis and then be recruited to inflammatory glomerulus by active homing effect. Afterwards, HA-DXM nanomicelles ruptured in response to the weakly acidic glomerulonephritis microenvironment, to locally release HA and DXM. On the one hand, DXM can inhibit the abnormal proliferation of mesangial cells. On the other hand, HA transformed pro-inflammatory M1 macrophages into anti-inflammatory M2 phenotype to improve the glomerular inflammatory microenvironment. In doxorubicin-induced glomerulonephritis models, results revealed that MM/HA-DXM could specifically "homing" to inflammatory renal tissue with 4.33-fold improvement in targeting performance. In addition, in vivo pharmacodynamic results proved that after treatment with MM/HA-DXM, the proteinuria level decreased to 2.33 times, as compared with that of control group, demonstrating a superior therapeutic effect on glomerulonephritis via this collaborative two-pronged anti-inflammatory therapy strategy.


Assuntos
Glomerulonefrite , Micelas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Biomimética , Glomerulonefrite/tratamento farmacológico , Humanos , Glomérulos Renais
17.
Macromol Rapid Commun ; 43(14): e2100897, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182088

RESUMO

Conjugated polymers possess better electron conductivity due to large π-electron conjugated configuration endowing them significant scientific and technological interest. However, the obvious deficiency of active-site underutilization impairs their electrochemical performance. Therefore, designing and engineering π-conjugated polymers with rich redox functional groups and mesoporous architectures could offer new opportunities for them in these emerging applications and further expand their application scopes. Herein, a series of 1,3,5-tris(4-aminophenyl) benzene (TAPB)-based π-conjugated mesoporous polymers (π-CMPs) are constructed by one-pot emulsion-induced interface assembly strategy. Furthermore, co-induced in situ polymerization on 2D interfaces by emulsion and micelles is explored, which delivers sandwiched 2D mesoporous π-CMPs-coated graphene oxides (GO@mPTAPB). Benefiting from specific redox-active functional groups, excellent electron conductivity and a 2D mesoporous conjugated framework, GO@mPTAPB exhibits high capability of accommodating Li+ anions (up to 382 mAh g-1 at 0.2 A g-1 ) and outstanding electrochemical stability (87.6% capacity retention after 1000 cycles). The ex situ Raman and impedance spectra are further applied to reveal the high reversibility of GO@mPTAPB. This work will greatly promote the development of advanced π-CMPs-based organic anodes toward energy storage devices.

18.
J Nanobiotechnology ; 20(1): 369, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953798

RESUMO

BACKGROUND: Immunosuppressive tumor immune microenvironment (TIME) lowers immunotherapy effectiveness. Additionally, low penetration efficiency and unpredictable drug release in tumor areas restrict tumor therapy. METHODS: A triblock copolymeric micelle (NanoPCPT+PIMDQ) was developed to carry the chemotherapeutic drug camptothecin (CPT) and the TLR7/8 agonist 1-(4-(aminomethyl)benzyl)-2-butyl-1H-imidazo[4,5-c] quinoline-4-amine (IMDQ) to achieve deep tumor penetration and on-demand drug release by responding to acid and reduction stimuli sequentially. The synergistic antitumour efficacy of NanoPCPT+PIMDQ was assessed both in vitro and in vivo. RESULTS: NanoPCPT+PIMDQ is composed of a hydrophilic PEG(polyethylene glycol) outer layer, an acid-sensitive EPEMA middle layer, and a drug inner core. Upon intratumoral injection, (i) NanoPCPT+PIMDQ first responds to the acidic tumor microenvironment and disintegrates to PIMDQ and PCPT, penetrating deep regions of the tumor; (ii) tumor cells are killed by the released CPT; (iii) DCs are activated by PIMDQ to increase the infiltration of cytotoxic T lymphocyte (CTL); and (iv) both downregulated Foxp3+ Tregs by CPT and repolarized M2 macrophages by PIMDQ can relieve the TIME. CONCLUSION: This pH/GSH-responsive triblock polymer-drug conjugate reduces immunosuppression and enhances the infiltration of CTLs by codelivering CPT and IMDQ in a controllable manner, providing a promising platform for synergistic tumor chemoimmunotherapy.


Assuntos
Camptotecina , Neoplasias , Camptotecina/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Micelas , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Receptor 7 Toll-Like , Microambiente Tumoral
19.
J Microencapsul ; 39(3): 197-209, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-31937168

RESUMO

OBJECTIVES: Folic acid was coupled to melphalan using glycyl-glycine (FA-Gly-Gly-Melphalan) to synthesise self-assembled nanomicelles for targeting ovarian cancer cells, SKOV3. METHODS AND RESULTS: FA-Gly-Gly-Melphalan self-assembled nanomicelles were prepared with critical micellar concentration (CMC) of 12-µg/ml. The mean particle size of FA-Gly-Gly-Melphalan self-assembled nanomicelles was measured to be 95.9 ± 3.4-nm significantly (p < 0.05) higher than 73.8 ± 6.3-nm of Gly-Gly-Melphalan self-assembled nanomicelles. Subsequently, zeta-potential of FA-Gly-Gly-Melphalan self-assembled nanomicelles was estimated to be -28.0 ± 1.5-mV significantly (p < 0.05) lower than -36.6 ± 2.7-mV of Gly-Gly-Melphalan self-assembled nanomicelles. The IC50 of FA-Gly-Gly-Melphalan self-assembled nanomicelles was estimated to be 4.1-µg/ml significantly (p < 0.001) lower than 14.2-µg/ml of Gly-Gly-Melphalan self-assembled nanomicelles and >18-µg/ml of melphalan. FA-Gly-Gly-Melphalan self-assembled nanomicelles preferentially accumulated in cytoplasm of SKOV3 cells nearby nucleus via receptor mediated endocytosis pathway after 24-h of incubation period, whilst Gly-Gly-Melphalan self-assembled nanomicelles were not incorporated sufficiently. CONCLUSION: FA-Gly-Gly-Melphalan self-assembled nanomicelles warrant in depth in vivo study for their safety, efficacy, and potency in clinical settings.


Assuntos
Ácido Fólico , Neoplasias Ovarianas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Glicilglicina , Humanos , Melfalan/farmacologia , Micelas , Neoplasias Ovarianas/tratamento farmacológico , Tamanho da Partícula
20.
Toxicol Appl Pharmacol ; 419: 115511, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819459

RESUMO

Hesperetin (HSP) has excellent biological activities with poor water solubility which limits its clinical development. In this study, we successfully prepared a novel, self-assembled micelle based on Rebaudioside A (RA) for oral delivery of HSP with improved bioavailability and therapeutic effects. We found that RA and HSP could be formylated into nanomicelles with particle sizes of 4.541 nm ± 0.048 nm. HSP was readily encapsulated into RA micelles and this improved its water solubility (to 12.74 mg/mL ± 0.28 mg/mL). The MTT results showed that RA-HSP enhanced the cytotoxicity, the clonal formation inhibitory activity, and cell migration inhibitory activity of HSP in human breast cancer MDA-MB-231 cells. The mechanism results showed that RA-HSP induced cell apoptosis by inducing the production of reactive oxygen species (ROS), destroying the mitochondrial membrane potential (MMP), and inhibiting the PI3K/Akt signaling pathway. Moreover, RA-HSP enhanced the anticancer activity, increased the oral bioavailability and tissue distribution of HSP in vivo. Moreover, the mechanism studies in vivo found that HSP inhibited PI3K/Akt signaling pathway with low side effects. These findings indicate that RA micelle formulations have great potential in oral drug delivery systems for the delivery of hydrophobic drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Diterpenos do Tipo Caurano/química , Portadores de Fármacos , Hesperidina/farmacologia , Nanopartículas , Administração Oral , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Hesperidina/administração & dosagem , Hesperidina/química , Hesperidina/farmacocinética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Micelas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Solubilidade , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa