Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Planta ; 260(2): 42, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958765

RESUMO

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Hipocótilo , Dióxido de Nitrogênio , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dióxido de Nitrogênio/farmacologia , Dióxido de Nitrogênio/metabolismo , Regiões Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutação
2.
Environ Res ; 257: 119328, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851369

RESUMO

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mudança Climática , Monitoramento Ambiental , Dióxido de Nitrogênio , Imagens de Satélites , Malásia , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Navios , COVID-19/epidemiologia , Emissões de Veículos/análise
3.
BMC Public Health ; 23(1): 828, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147646

RESUMO

BACKGROUND: Previous studies showed the adverse impacts of air pollution on headache attacks in developed countries. However, evidence is limited to the impact of exposure to air pollutants on headache attacks. In this study, we aimed to explore the impact of nitrogen dioxide (NO2) exposure on neurology clinic visits (NCVs) for headache onsets. METHODS: Records of NCVs for headaches, concentrations of ambient NO2, and meteorological variables were collected in Wuhan, China, from January 1st, 2017, to November 30th, 2019. A time-series study was conducted to investigate the short-term effects of NO2 exposure on daily NCVs for headaches. Stratified analyses were also computed according to season, age, and sex, and the exposure-response (E-R) curve was then plotted. RESULTS: A total of 11,436 records of NCVs for headaches were enrolled in our study during the period. A 10-µg/m3 increase of ambient NO2 corresponded to a 3.64% elevation of daily NCVs for headaches (95%CI: 1.02%, 6.32%, P = 0.006). Moreover, females aged less than 50 years of age were more susceptible compared to males (4.10% vs. 2.97%, P = 0.007). The short-term effects of NO2 exposure on daily NCVs for headaches were stronger in cool seasons than in warm seasons (6.31% vs. 0.79%, P = 0.0009). CONCLUSION: Our findings highlight that short-term exposure to ambient NO2 positively correlated with NCVs for headaches in Wuhan, China, and the adverse effects varied by season, age, and sex.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Assistência Ambulatorial , China/epidemiologia , Cefaleia/induzido quimicamente , Cefaleia/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
4.
J Environ Sci (China) ; 132: 109-121, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336601

RESUMO

Long-term stereoscopic observations of aerosol, NO2, and HCHO were carried out at the Yangmeikeng (YMK) site in Shenzhen. Aerosol optical depths and NO2 vertical column concentration (NO2 VCD) derived from MAX-DOAS were found to be consistent with other datasets. The total NO2 VCD values of the site remained low, varying from 2 × 1015 to 8 × 1015 mol/cm2, while the HCHO VCD was higher than NO2 VCD, varying from 7 × 1015 to 11 × 1015 mol/cm2. HCHO VCD was higher from September to early November than that was from mid-late November to December and during February 2021, in contrast, NO2 VCD did not change much during the same period. In January, NO2 VCD and HCHO VCD were both fluctuating drastically. High temperature and HCHO level in the YMK site is not only driving the ozone production up but also may be driving up the ozone concentration as well, and the O3 production regime in the YMK site tends to be NOx-limited. At various altitudes, backward trajectory clustering analysis and Potential Source Contribution Function (PSCF) were utilized to identify possible NO2 and HCHO source locations. The results suggested that the Huizhou-Shanwei border and the Daya Bay Sea area were the key potential source locations in the lower (200 m) and middle (500 m) atmosphere (WPSCF > 0.6). The WPSCF value was high at the 1000 m altitude which was closer to the YMK site than the near ground, indicating that the pollution transport capability in the upper atmosphere was limited.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Poluição Ambiental/análise
5.
Environ Sci Technol ; 56(16): 11460-11472, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917479

RESUMO

Growing evidence links traffic-related air pollution (TRAP) to adverse health effects. We designed an innovative and extensive mobile monitoring campaign to characterize TRAP exposure levels for the Adult Changes in Thought (ACT) study, a Seattle-based cohort. The campaign measured particle number concentration (PNC) to capture ultrafine particles (UFP), black carbon (BC), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and carbon dioxide (CO2) at 309 roadside sites within a large, 1200 land km2 (463 mi2) area representative of the cohort. We collected about 29 two-minute measurements at each site during all seasons, days of the week, and most times of the day over a 1-year period. Validation showed good agreement between our BC, NO2, and PM2.5 measurements and monitoring agency sites (R2 = 0.68-0.73). Universal kriging-partial least squares models of annual average pollutant concentrations had cross-validated mean square error-based R2 (and root mean square error) values of 0.77 (1177 pt/cm3) for PNC, 0.60 (102 ng/m3) for BC, 0.77 (1.3 ppb) for NO2, 0.70 (0.3 µg/m3) for PM2.5, and 0.51 (4.2 ppm) for CO2. Overall, we found that the design of this extensive campaign captured the spatial pollutant variations well and these were explained by sensible land use features, including those related to traffic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Fuligem
6.
Environ Sci Technol ; 56(17): 12045-12054, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001734

RESUMO

Nitrous acid (HONO) is a household pollutant exhibiting adverse health effects and a major source of indoor OH radicals under a variety of lighting conditions. The present study focuses on gas-phase HONO and condensed-phase nitrite and nitrate formation on indoor surface thin films following heterogeneous hydrolysis of NO2, in the presence and absence of light, and nitrate (NO3-) photochemistry. These thin films are composed of common building materials including zeolite, kaolinite, painted walls, and cement. Gas-phase HONO is measured using an incoherent broadband cavity-enhanced ultraviolet absorption spectrometer (IBBCEAS), whereby condensed-phase products, adsorbed nitrite and nitrate, are quantified using ion chromatography. All of the surface materials used in this study can store nitrogen oxides as nitrate, but only thin films of zeolite and cement can act as condensed-phase nitrite reservoirs. For both the photo-enhanced heterogeneous hydrolysis of NO2 and nitrate photochemistry, the amount of HONO produced depends on the material surface. For zeolite and cement, little HONO is produced, whereas HONO is the major product from kaolinite and painted wall surfaces. An important result of this study is that surface interactions of adsorbed nitrite are key to HONO formation, and the stronger the interaction of nitrite with the surface, the less gas-phase HONO produced.


Assuntos
Ácido Nitroso , Zeolitas , Caulim , Nitratos , Nitritos , Dióxido de Nitrogênio/análise , Óxidos de Nitrogênio , Ácido Nitroso/química
7.
BMC Public Health ; 22(1): 178, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081933

RESUMO

BACKGROUND: There is growing evidence to suggest that exposure to a high concentration of nitrogen dioxide (NO2) can lead to a higher incidence of Acute Respiratory Infections (ARIs) in children; however, such an association remains understudied in Sub-Saharan Africa due to the limited availability of exposure data. This study explored this association by using the satellite-detected tropospheric NO2 concentrations measured by Sentinel-5 Precursor and ARI symptoms in children under age five collected in the Demographic and Health Survey (DHS) in Senegal. METHODS: We matched the daily tropospheric NO2 exposure with the individual ARI symptoms according to the DHS survey clusters spatially and temporally and conducted a logistic regression analysis to estimate the association of exposure to NO2 with ARI symptoms in two preceding weeks. RESULTS: We observed a positive association between exposure to continuous levels of NO2 and ARI symptoms after adjusting for confounders (OR 1.27 per 10 mol/m2, 95% CI: 1.06 - 1.52). When the association was further examined by quartile exposure categories, the 4th quartile category was positively associated with symptoms of ARI after adjusting for confounders (OR 1.71, 95% CI: 1.08-2.69). This suggests that exposure to certain high levels of NO2 is associated with the increased risk of children having symptoms of ARI in Senegal. CONCLUSIONS: This study highlights the need for increased research on the effects of ambient NO2 exposure in Africa as well as the need for more robust, ground-based air monitoring in the region. For a country like Senegal, where more than 90% of the population lives in areas that do not meet the national air quality standards, it is urgently required to implement air pollution prevention efforts to protect children from the health hazards of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infecções Respiratórias , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Infecções Respiratórias/induzido quimicamente , Infecções Respiratórias/epidemiologia , Senegal/epidemiologia , Análise Espaço-Temporal
8.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684386

RESUMO

The interaction strength of nitrogen dioxide (NO2) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO2 molecules. Among the functional groups considered, the highest interaction energy with NO2 (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO3H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO2 interactions (-OSO3H, -PO3H2, -OPO3H2) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO2 uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO2 uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO2 uptake performance not only in MOFs but also in various other porous materials.

9.
Build Environ ; 219: 109176, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35599669

RESUMO

The pandemic of COVID-19 currently shadows the world; the whole earth has been on an unprecedented lockdown. Social distancing among people interrupted domestic and international air traffic, suspended industrial productions and economic activities, and had various far-reaching and undetermined implications on air quality. Improvement in air quality has been reported in many cities during the lockdown. On March 22, 2020, the Turkish government enforced strict lockdown measures to reduce coronavirus disease transmission. This lockdown had a significant impact on the movement of people within the country, which resulted in a major drop in worldwide commercial activities. During this period, university campuses were emptied due to the transition to distance education. In this study, various air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), fine particulate matter (PM2.5), total bacteria, and total fungi were measured in different indoor environments at Eskisehir Technical University Campus in Eskisehir, Turkey during COVID-19 lock down period. Also, to calculate the indoor and outdoor ratios (I/O) of the pollutants, simultaneous outdoor measurements were also carried out. The average indoor SO2, NO2, O3, and PM2.5 concentrations in different indoor environments ranged between 2.10 and 54.58, 1.36-30.89, 12.01-39.05, and 21-94 µg/m3, respectively. The total number of bacteria and fungi ranged between 21.83-514.15 and 13.10-83.36 CFU/m3, respectively. Our study intends to give a glimpse to quantify the impact of a pandemic on air quality in different indoor environments in a university campus in Eskisehir, Turkey and calls for follow-up studies. Indoor concentrations were evaluated together with outdoor concentrations. In general, it can be said that the calculated I/O ratios for SO2, NO2, O3, bacteria, and fungi were less than 1 in most indoor environments.

10.
Indoor Air ; 31(1): 170-187, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32731301

RESUMO

School-age children are particularly susceptible to exposure to air pollutants. To quantify factors affecting children's exposure at school, indoor and outdoor microenvironmental air pollutant concentrations were measured at 32 selected primary and secondary schools in Hong Kong. Real-time PM10 , PM2.5 , NO2, and O3 concentrations were measured in 76 classrooms and 23 non-classrooms. Potential explanatory factors related to building characteristics, ventilation practice, and occupant activities were measured or recorded. Their relationship with indoor measured concentrations was examined using mixed linear regression models. Ten factors were significantly associated with indoor microenvironmental concentrations, together accounting for 74%, 61%, 46%, and 38% of variations observed for PM2.5 , PM10 , O3, and NO2 microenvironmental concentrations, respectively. Outdoor concentration is the single largest predictor for indoor concentrations. Infiltrated outdoor air pollution contributes to 90%, 70%, 75%, and 50% of PM2.5 , PM10 , O3, and NO2 microenvironmental concentrations, respectively, in classrooms during school hours. Interventions to reduce indoor microenvironmental concentrations can be prioritized in reducing ambient air pollution and infiltration of outdoor pollution. Infiltration factors derived from linear regression models provide useful information on outdoor infiltration and help address the gap in generalizable parameter values that can be used to predict school microenvironmental concentrations.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Instituições Acadêmicas , Criança , Monitoramento Ambiental , Gases , Humanos
11.
J Clean Prod ; 291: 125806, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36569464

RESUMO

Restrictions on human and industrial activities due to the coronavirus (COVID-19) pandemic have resulted in an unprecedented reduction in energy consumption and air pollution around the world. Quantifying these changes in environmental conditions due to government-enforced containment measures provides a unique opportunity to understand the patterns, origins and impacts of air pollutants. During the lockdown in Pakistan, a significant reduction in energy demands and a decline of ∼1786 GWh (gigawatt hours) in electricity generation is reported. We used satellite observational data for nitrogen dioxide (NO2), carbon monoxide (CO), sulphur dioxide (SO2), aerosol optical depth (AOD) and land surface temperature (LST) to explore the associated environmental impacts of shifts in energy demands and emissions across Pakistan. During the strict lockdown period (March 23 to April 15, 2020), we observed a reduction in NO2 emissions by 40% from coal-based power plants followed by 30% in major urban areas compared to the same period in 2019. Also, around 25% decrease in AOD (at 550 nm) thickness in industrial and energy sectors was observed although no major decrease was evident in urban areas. Most of the industrial regions resumed emissions during the 3rd quarter of April 2020 while the urban regions maintained reduced emissions for a longer period. Nonetheless, a gradual increase has been observed since April 16 due to relaxations in lockdown implementations. Restrictions on transportation in the cities resulted in an evident drop in the surface urban heat island (SUHI) effect, particularly in megacities. The changes reported as well as the analytical framework provides a baseline benchmark to assess the sectoral pollution contributions to air quality, especially in the scarcity of ground-based monitoring systems across the country.

12.
Environ Res ; 190: 109870, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739624

RESUMO

BACKGROUND: Effects of air pollutants are related to oxidative stress which is also linked to the pathogenesis of dementia including Alzheimer's and related diseases. OBJECTIVE: We assessed associations between exposure to air pollutants and the onset of dementia; the association with the distance between residence and major roads was also assessed for the island of Montreal. METHODS: We created an open cohort of adults aged 65 years and older starting in 2000 and ending in 2012 in the province of Québec, Canada using linked medico-administrative databases. New cases of dementia were defined based on a validated algorithm. Annual residential levels of nitrogen dioxide (NO2) and fine particles (PM2.5) at residential levels were estimated for each year of follow up using estimates based on satellite images and ground air monitoring data. Hazard ratios (HRs) were assessed with Extended (time dependent exposure) Cox models with age as the time axis and stratified for sex, for the annual exposure level at each residential address. Models were adjusted for the calendar year, area-wide social and material deprivation indexes and for NO2 or PM2.5; they were also indirectly adjusted for smoking. RESULTS: 1,807,133 persons (13,242,270 person-years) were followed and 199,826 developed dementia. From models (adjusted for calendar year, social and material deprivation indexes), HRs for an interquartile range (IQR) increase in time-varying exposure to NO2 (IQR 13.26 ppb), PM2.5 (IQR 3.90 µg/m³), and distance to major roads (IQR 150 m, in Montreal only), were 1.005 (CI 95% 0.994-1.017), 1.016 (CI 95% 1.003-1.028) and 0.969 (CI 95% 0.958-0.980), respectively. CONCLUSIONS: Results suggest that the onset of dementia may be related to residential exposure to PM2.5, NO2, and distance to major roads.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Demência , Adulto , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Canadá , Demência/induzido quimicamente , Demência/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Quebeque/epidemiologia
13.
Environ Health ; 19(1): 37, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245482

RESUMO

BACKGROUND: Malaysia has the highest rate of diabetes mellitus (DM) in the Southeast Asian region, and has ongoing air pollution and periodic haze exposure. METHODS: Diabetes data were derived from the Malaysian National Health and Morbidity Surveys conducted in 2006, 2011 and 2015. The air pollution data (NOx, NO2, SO2, O3 and PM10) were obtained from the Department of Environment Malaysia. Using multiple logistic and linear regression models, the association between long-term exposure to these pollutants and prevalence of diabetes among Malaysian adults was evaluated. RESULTS: The PM10 concentration decreased from 2006 to 2014, followed by an increase in 2015. Levels of NOx decreased while O3 increased annually. The air pollutant levels based on individual modelled air pollution exposure as measured by the nearest monitoring station were higher than the annual averages of the five pollutants present in the ambient air. The prevalence of overall diabetes increased from 11.4% in 2006 to 21.2% in 2015. The prevalence of known diabetes, underdiagnosed diabetes, overweight and obesity also increased over these years. There were significant positive effect estimates of known diabetes at 1.125 (95% CI, 1.042, 1.213) for PM10, 1.553 (95% CI, 1.328, 1.816) for O3, 1.271 (95% CI, 1.088, 1.486) for SO2, 1.124 (95% CI, 1.048, 1.207) for NO2, and 1.087 (95% CI, 1.024, 1.153) for NOx for NHMS 2006. The adjusted annual average levels of PM10 [1.187 (95% CI, 1.088, 1.294)], O3 [1.701 (95% CI, 1.387, 2.086)], NO2 [1.120 (95% CI, 1.026, 1.222)] and NOx [1.110 (95% CI, 1.028, 1.199)] increased significantly from NHMS 2006 to NHMS 2011 for overall diabetes. This was followed by a significant decreasing trend from NHMS 2011 to 2015 [0.911 for NO2, and 0.910 for NOx]. CONCLUSION: The findings of this study suggest that long-term exposure to O3 is an important associated factor of underdiagnosed DM risk in Malaysia. PM10, NO2 and NOx may have mixed effect estimates towards the risk of DM, and their roles should be further investigated with other interaction models. Policy and intervention measures should be taken to reduce air pollution in Malaysia.


Assuntos
Poluição do Ar/efeitos adversos , Diabetes Mellitus/epidemiologia , Exposição Ambiental/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Diabetes Mellitus/etiologia , Feminino , Humanos , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Material Particulado/análise , Prevalência , Adulto Jovem
14.
Environ Res ; 172: 55-72, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30771627

RESUMO

BACKGROUND: Fossil fuel combustion by-products, including particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAH), nitrogen dioxide (NO2) and carbon dioxide (CO2), are a significant threat to children's health and equality. Various policies to reduce emissions have been implemented to reduce air pollution and mitigate climate change, with sizeable estimated health and economic benefits. However, only a few adverse outcomes in children have been considered, resulting in an undercounting of the benefits to this vulnerable population. OBJECTIVES: Our goal was to expand the suite of child health outcomes addressed by programs to assess health and economic benefits, such as the Environmental Protection Agency (EPA) Benefits Mapping and Analysis Program (BenMAP), by identifying concentration-response (C-R) functions for six outcomes related to PM2.5, NO2, PAH, and/or PM10: preterm birth (PTB), low birthweight (LBW), autism, attention deficit hyperactivity disorder, IQ reduction, and the development of childhood asthma. METHODS: We conducted a systematic review of the literature published between January 1, 2000 and April 30, 2018 to identify relevant peer-reviewed case-control and cohort studies and meta-analyses. In some cases meta-analyses were available that provided reliable C-R functions and we assessed their consistency with subsequent studies. Otherwise, we reviewed all eligible studies published between our search dates. RESULTS: For each pollutant and health outcome, we present the characteristics of each selected study. We distinguish between C-R functions for endpoints having a causal or likely relationship (PTB, LBW, autism, asthma development) with the pollutants for incorporation into primary analyses and endpoints having a suggestive causal relationship with the pollutants (IQ reduction, ADHD) for secondary analyses. CONCLUSION: We have identified C-R functions for a number of adverse health outcomes in children associated with air pollutants largely from fossil fuel combustion. Their incorporation into expanded assessments of health benefits of clean air and climate mitigation policies will provide an important incentive for preventive action.


Assuntos
Poluição do Ar , Saúde da Criança , Mudança Climática , Combustíveis Fósseis , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Saúde da Criança/normas , Exposição Ambiental/prevenção & controle , Feminino , Combustíveis Fósseis/efeitos adversos , Humanos , Gravidez , Medição de Risco
15.
Sensors (Basel) ; 19(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754637

RESUMO

Nitrogen dioxide (NO 2 ) is a poisonous trace gas that requires monitoring in urban areas. Accurate measurement in sub-ppm concentrations represents a wide application field for suitable economical sensors. We present a novel approach to measure NO 2 with a photoacoustic sensor using a T-shaped resonance cell. An inexpensive UV-LED with a peak wavelength of 405 nm as radiation source as well as a commercial MEMS microphone for acoustic detection were used. In this work, a cell has been developed that enables a "non-contact" feedthrough of the divergent LED beam. Thus, unwanted background noise due to absorption on the inside walls is minimized. As part of the development, an acoustic simulation has been carried out to find the resonance frequencies and to visualize the resulting standing wave patterns in various geometries. The pressure amplitude was calculated for different shapes and sizes. A model iteratively optimized in this way forms the basis of a construction that was built for gas measurement by rapid prototyping methods. The real resonance frequencies were compared to the ones found in simulation. The limit of detection was determined in a nitrogen dioxide measurement to be 200 ppb (6 σ ) for a cell made of aluminum.

16.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795591

RESUMO

Toxic gases, such as NOx, SOx, H2S and other S-containing gases, cause numerous harmful effects on human health even at very low gas concentrations. Reliable detection of various gases in low concentration is mandatory in the fields such as industrial plants, environmental monitoring, air quality assurance, automotive technologies and so on. In this paper, the recent advances in electrochemical sensors for toxic gas detections were reviewed and summarized with a focus on NO2, SO2 and H2S gas sensors. The recent progress of the detection of each of these toxic gases was categorized by the highly explored sensing materials over the past few decades. The important sensing performance parameters like sensitivity/response, response and recovery times at certain gas concentration and operating temperature for different sensor materials and structures have been summarized and tabulated to provide a thorough performance comparison. A novel metric, sensitivity per ppm/response time ratio has been calculated for each sensor in order to compare the overall sensing performance on the same reference. It is found that hybrid materials-based sensors exhibit the highest average ratio for NO2 gas sensing, whereas GaN and metal-oxide based sensors possess the highest ratio for SO2 and H2S gas sensing, respectively. Recently, significant research efforts have been made exploring new sensor materials, such as graphene and its derivatives, transition metal dichalcogenides (TMDs), GaN, metal-metal oxide nanostructures, solid electrolytes and organic materials to detect the above-mentioned toxic gases. In addition, the contemporary progress in SO2 gas sensors based on zeolite and paper and H2S gas sensors based on colorimetric and metal-organic framework (MOF) structures have also been reviewed. Finally, this work reviewed the recent first principle studies on the interaction between gas molecules and novel promising materials like arsenene, borophene, blue phosphorene, GeSe monolayer and germanene. The goal is to understand the surface interaction mechanism.

17.
Environ Res ; 147: 435-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970897

RESUMO

Air pollution in metropolitan areas is mainly caused by traffic emissions. This study presents the development of a model chain consisting of a transportation model, an emissions model, and atmospheric dispersion model, applied to dynamically evaluate individuals' exposure to air pollution by intersecting daily trajectories of individuals and hourly spatial variations of air pollution across the study domain. This dynamic approach is implemented in Montreal, Canada to highlight the advantages of the method for exposure analysis. The results for nitrogen dioxide (NO2), a marker of traffic related air pollution, reveal significant differences when relying on spatially and temporally resolved concentrations combined with individuals' daily trajectories compared to a long-term average NO2 concentration at the home location. We observe that NO2 exposures based on trips and activity locations visited throughout the day were often more elevated than daily NO2 concentrations at the home location. The percentage of all individuals with a lower 24-hour daily average at home compared to their 24-hour mobility exposure is 89.6%, of which 31% of individuals increase their exposure by more than 10% by leaving the home. On average, individuals increased their exposure by 23-44% while commuting and conducting activities out of home (compared to the daily concentration at home), regardless of air quality at their home location. We conclude that our proposed dynamic modelling approach significantly improves the results of traditional methods that rely on a long-term average concentration at the home location and we shed light on the importance of using individual daily trajectories to understand exposure.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Modelos Teóricos , Emissões de Veículos , Humanos , Dióxido de Nitrogênio , Características de Residência
18.
J Environ Manage ; 181: 615-622, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451292

RESUMO

Providing a healthy school environment is a priority for child health. The aim of this study is to develop a methodology that allows quantification of the potential economic benefit of reducing indoor exposure to nitrogen dioxide (NO2) in children attending primary schools. Using environmental and health data collected in primary schools in London, this study estimates that, on average, 82 asthma exacerbations per school can be averted each year by reducing outdoor NO2 concentrations. The study expands upon previous analyses in two ways: first it assesses the health benefits of reducing children's exposure to indoor NO2 while at school, second it considers the children's perspective in the economic evaluation. Using a willingness to pay approach, the study quantifies that the monetary benefits of reducing children's indoor NO2 exposure while at school would range between £2.5 k per school if a child's perspective based on child's budget is adopted up to £60 k if a parent's perspective is considered. This study highlights that designers, engineers, policymakers and stakeholders need to consider the reduction of outdoor pollution, and particularly NO2 levels, near primary schools as there may be substantial health and monetary benefits.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Asma/epidemiologia , Dióxido de Nitrogênio/análise , Asma/economia , Asma/prevenção & controle , Criança , Serviços de Saúde da Criança , Análise Custo-Benefício , Monitoramento Ambiental , Feminino , Humanos , Londres/epidemiologia , Masculino , Instituições Acadêmicas
19.
New Phytol ; 201(4): 1304-1315, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24354517

RESUMO

• To gain more insight into the physiological function of nitrogen dioxide (NO2), we investigated the effects of exogenous NO2 on growth in Arabidopsis thaliana. • Plants were grown in air without NO2 for 1 wk after sowing and then grown for 1-4 wk in air with (designated treated plants) or without (control plants) NO2. Plants were irrigated semiweekly with a nutrient solution containing 19.7 mM nitrate and 10.3 mM ammonium. • Five-week-old plants treated with 50 ppb NO2 showed a ≤ 2.8-fold increase in biomass relative to controls. Treated plants also showed early flowering. The magnitude of the effects of NO2 on leaf expansion, cell proliferation and enlargement was greater in developing than in maturing leaves. Leaf areas were 1.3-8.4 times larger on treated plants than corresponding leaves on control plants. The NO2-induced increase in leaf size was largely attributable to cell proliferation in developing leaves, but was attributable to both cell proliferation and enlargement in maturing leaves. The expression of different sets of genes for cell proliferation and/or enlargement was induced by NO2, but depended on the leaf developmental stage. • Collectively, these results indicated that NO2 regulates organ growth by controlling cell proliferation and enlargement.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Dióxido de Nitrogênio/farmacologia , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Endorreduplicação/efeitos dos fármacos , Flores/efeitos dos fármacos , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Tamanho do Órgão/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Ploidias
20.
Cancer Epidemiol ; 92: 102606, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986354

RESUMO

BACKGROUND: Air pollution has been classified as a human carcinogen based largely on findings for respiratory cancers. Emerging, but limited, evidence suggests that it increases the risk of breast cancer, particularly among younger women. We characterized associations between residential exposure to ambient fine particulate matter (PM2.5) and nitrogen dioxide (NO2) and breast cancer. Analyses were performed using data collected in the Ontario Environmental Health Study (OEHS). METHODS: The OEHS, a population-based case-control study, identified incident cases of breast cancer in Ontario, Canada among women aged 18-45 between 2013 and 2015. A total of 465 pathologically confirmed primary breast cancer cases were identified from the Ontario Cancer Registry, while 242 population-based controls were recruited using random-digit dialing. Self-reported questionnaires were used to collect risk factor data and residential histories. Land-use regression and remote-sensing estimates of NO2 and PM2.5, respectively, were assigned to the residential addresses at interview, five years earlier, and at menarche. Logistic regression was used to estimate odds ratios (OR) and their 95 % confidence intervals (CI) in relation to an interquartile range (IQR) increase in air pollution, adjusting for possible confounders. RESULTS: PM2.5 and NO2 were positively correlated with each other (r = 0.57). An IQR increase of PM2.5 (1.9 µg/m3) and NO2 (6.6 ppb) at interview residence were associated with higher odds of breast cancer and the adjusted ORs and 95 % CIs were 1.37 (95 % CI = 0.98-1.91) and 2.33 (95 % CI = 1.53-3.53), respectively. An increased odds of breast cancer was observed with an IQR increase in NO2 at residence five years earlier (OR = 2.16, 95 % CI: 1.41-3.31), while no association was observed with PM2.5 (OR = 0.96, 95 % CI 0.64-1.42). CONCLUSIONS: Our findings support the hypothesis that exposure to ambient air pollution, especially those from traffic sources (i.e., NO2), increases the risk of breast cancer in young women.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa