Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
New Phytol ; 241(4): 1559-1573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095258

RESUMO

In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.


Assuntos
Marchantia , Gotículas Lipídicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reprodução , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-28, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594966

RESUMO

Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.

3.
J Sci Food Agric ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105634

RESUMO

BACKGROUND: Rice bran oil body is rich in nutritional value, which is a byproduct of rice processing. The aim of this study is to develop a novel emulsion-filled gel with lutein-loaded rice bran oil body and investigate its functionality as a fat replacer in cookies. The effects of incorporating structured oil body in the form of emulsion-filled gel instead of butter in cookies with a ratio of 0, 10, 20 and 50 wt% formulation were determined by measuring appearance, texture, thermodynamic properties, moisture distribution and microstructure. RESULTS: The results demonstrated the relationship between geometry, moisture and structure. The 20 wt% emulsion-filled gel substitution ratio yielded mobility and distribution abilities of melted fat and sugar in the cookies that were closest to those of butter. The addition of emulsion-filled gel increased the L* value and decreased the a* value, while the b* value of the cookie increased due to the advanced delivery of lutein by oil body. By controlling the addition ratio, the texture of the cookies can be adjusted. Starch granules were separated due to colloidal particles, reducing saturated fat content and decreasing cookie gelatinization enthalpy. The fat coating on starch particles enhanced the binding capacity of free water, improving air entrapment and forming a constrained gluten network structure. CONCLUSION: These findings provide a theoretical basis for rice bran oil body as a novel substitute for butter in the development of healthy, high-quality cookies. © 2024 Society of Chemical Industry.

4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835614

RESUMO

Brassica napus is the most important oilseed crop in the world, and the lipid was stored in the oil body (OB) in the form of triacylglycerol. At present, most of studies on the relationship between oil body morphology and seed oil content in B. napus was focused on mature seeds. In the present study, the OBs in different developing seeds of B. napus with relatively high oil content (HOC) of about 50% and low oil content (LOC) of about 39% were analyzed. It was revealed that the size of OBs was first increased and then decreased in both materials. And in late seed developmental stages, the average OB size of rapeseed with HOC was higher than that of LOC, while it was reversed in the early seed developmental stages. No significant difference was observed on starch granule (SG) size in HOC and LOC rapeseed. Further results indicated that the expression of genes that involved in malonyl-CoA metabolism, fatty acid carbon chain extension, lipid metabolism, and starch synthesis in the rapeseed with HOC was higher than that of rapeseed with LOC. These results give some new insight for understanding the dynamics of OBs and SGs in embryos of B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Gotículas Lipídicas/metabolismo , Óleos de Plantas/metabolismo , Brassica rapa/metabolismo , Sementes/metabolismo , Amido/metabolismo
5.
J Sci Food Agric ; 103(8): 3822-3829, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36273264

RESUMO

BACKGROUND: Soymilk is utilized not only as a beverage but also as an alternative to bovine milk, including products such as yoghurt and cream. Evaporated soymilk is expected to be utilized as condensed milk. Raw and heated soymilk samples prepared in our laboratory were evaporated and then subjected to viscosity measurement. The soymilk samples were made from two different varieties: Fukuyutaka, which contains 7S and 11S globulin proteins; and an 11S-lacking soybean (Nanahomare). RESULTS: Raw Fukuyutaka soymilk had a lower viscosity and could be concentrated to a solids content of over 300 g kg-1 compared to heated soymilk (around 250 g kg-1 ), but the viscosity changes of Nanahomare soymilk showed an opposite trend. Only 7S globulin was denatured during evaporation at 75 °C and likely affected the interaction between proteins and oil bodies. This tendency was remarkable in the Nanahomare soymilk. The strange viscosity change behavior of evaporated Nanahomare soymilk, number of protein particles, intrinsic fluorescence and flow behavior suggest that thermally denatured 7S globulin accelerates the interactions between oil bodies, whereas 11S globulin, which is probably in its native state, suppresses the acceleration by denatured 7S globulin. CONCLUSION: Raw soymilk containing native globulins shows a slower increase in viscosity during evaporation. However, denatured 7S globulin accelerates the increase in viscosity during evaporation through interactions between oil bodies. The effect of the denatured state of individual proteins on interactions is expected to be useful in understanding the interaction between proteins and in controlling their properties and functions. © 2022 Society of Chemical Industry.


Assuntos
Glycine max , Leite de Soja , Leite de Soja/química , Glycine max/química , Sementes/química , Globulinas/química , Viscosidade , Volatilização , Ultracentrifugação , Tamanho da Partícula
6.
J Sci Food Agric ; 103(7): 3550-3557, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36789528

RESUMO

BACKGROUND: Soybean oil bodies (SOB) are droplets of natural emulsified oil. Soybean oil emulsifies well but it is easily oxidized during storage. Beet pectin is a complex anionic polysaccharide, which can be adsorbed on the surface of liposomes to improve their resistance to flocculation. Laccase can covalently cross-link ferulic acid in beet pectin, and its structure is irreversible, which can improve the stability of polysaccharides. RESULTS: At pH 2.5, laccase cross-linked beet pectin high-oil soybean oil body (HOSOB) and high-protein soybean oil body (HPSOB) emulsions showed obvious aggregation and severe stratification, and the oxidation of the emulsions was also high. The flocculation of emulsions decreased with an increase in the pH. The effect of pH on the flocculation of emulsion was confirmed by confocal laser electron microscopy. The ζ potential, emulsification, and rheological shear force increased with increasing pH whereas the particle size and surface hydrophobicity decreased with increasing pH. CONCLUSION: This experiment indicates that the physicochemical stability of the two composite emulsions was strongly affected under acidic conditions but stable under neutral and weakly alkaline conditions. Under the same acid-base conditions, the degree of oxidation of HPSOB composite emulsion changes substantially. The results of this study can provide a basis for the design of very stable emulsions to meet the demand for natural products. © 2023 Society of Chemical Industry.


Assuntos
Beta vulgaris , Pectinas , Antioxidantes , Beta vulgaris/química , Emulsões/química , Lacase , Gotículas Lipídicas , Tamanho da Partícula , Pectinas/química , Polissacarídeos , Proteínas , Óleo de Soja/química , Glycine max , Oxirredução , Fenômenos Químicos
7.
J Sci Food Agric ; 102(11): 4909-4917, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35246844

RESUMO

BACKGROUND: Oil bodies (OBs) are a kind of natural and stable oil nucleate microcapsule in which the triglyceride matrix can be used as an appropriate carrier of hydrophobic molecules. Astaxanthin has high antioxidant properties but is extremely sensitive to oxidation, causing the loss of its bioactive properties. RESULTS: The purpose of this study was to clarify the effects of environmental factors (light, oxygen, temperature, and pH) on the physical and oxidative stability of astaxanthin microcapsules prepared with peanut oil bodies (POBs). After 14 days of storage, the retention rate of astaxanthin in peanut oil microcapsules (POMs) was significantly increased. The astaxanthin retention rate of POMs stored under light conditions was higher than under dark conditions. Similarly, the retention rate of astaxanthin in POMs was significantly increased during vacuum storage. The astaxanthin retention rate was also the highest when POMs were stored at 4 °C, whereas it was the lowest at pH 3.0. CONCLUSION: The experiment demonstrated that microcapsulation could improve the astaxanthin retention rate and storage stability, and recombinant OBs were potential ideal wall materials for astaxanthin embedding. © 2022 Society of Chemical Industry.


Assuntos
Lipossomos , Xantofilas , Cápsulas/química , Estresse Oxidativo , Xantofilas/química
8.
Yi Chuan ; 44(12): 1128-1140, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927558

RESUMO

Oil bodies, also known as lipid droplets or oil droplets, are important organelles for oil storage in plant cells. The oil body is composed of a monolayer of phospholipid membrane encapsulating neutral fatty acids, and a variety of membrane proteins are embedded in the membrane, including oleosin, caleosin and steroleosin, of which oleosin accounts for 80%-90%. Oleosin plays important biological roles in various biological roles, such as affecting the size and stability of oil bodies, formation and degradation of oil bodies, lipid metabolism, and seed maturation and germination. In this review, we summarize the sequence and structural characteristics of oleosin and its important role in plant growth and development based on the research progress of plant oleosin gene families at home and abroad in recent years. Additionally, we discuss the application of oleosin in actual production and problems in the research and application, in order to provide a useful reference for people to further study the functions of oleosin-related molecules and their application in production practice.


Assuntos
Organelas , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Organelas/metabolismo , Proteínas de Membrana/metabolismo , Sementes
9.
BMC Plant Biol ; 21(1): 348, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301189

RESUMO

BACKGROUND: The oil-tea tree (Camellia oleifera Abel.) is a woody tree species that produces edible oil in the seed. C. oleifera oil has high nutritional value and is also an important raw material for medicine and cosmetics. In China, due to the uncertainty on maturity period and oil synthesis mechanism of many C. oleifera cultivars, growers may harvest fruits prematurely, which could not maximize fruit and oil yields. In this study, our objective was to explore the mechanism and differences of oil synthesis between two Camellia oleifera cultivars for a precise definition of the fruit ripening period and the selection of appropriate cultivars. RESULTS: The results showed that 'Huashuo' had smaller fruits and seeds, lower dry seed weight and lower expression levels of fatty acid biosynthesis genes in July. We could not detect the presence of oil and oil bodies in 'Huashuo' seeds until August, and oil and oil bodies were detected in 'Huajin' seeds in July. Moreover, 'Huashuo' seeds were not completely blackened in October with up to 60.38% of water and approximately 37.98% of oil in seed kernels whose oil content was much lower than normal mature seed kernels. The oil bodies in seed endosperm cells of 'Huajin' were always higher than those of 'Huashuo' from July to October. CONCLUSION: Our results confirmed that C. oleifera 'Huashuo' fruits matured at a lower rate compared to 'Huajin' fruits and that 'Huajin' seeds entered the oil synthesis period earlier than 'Huashuo' seeds. Moreover, 'Huashuo' fruits did not mature during the Frost's Descent period (October 23-24 each year).


Assuntos
Camellia/crescimento & desenvolvimento , Camellia/genética , Camellia/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Óleos de Plantas/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ácidos Graxos/metabolismo , Variação Genética , Genótipo , Melhoramento Vegetal , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Transcriptoma
10.
Planta ; 254(5): 97, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34655341

RESUMO

MAIN CONCLUSION: Overexpression of forage sorghum oleosin genes in Arabidopsis oleosin-deficient mutant and yeast showed increased germination rate, triacylglycerol content, and protection against lipase-mediated TAG degradation. Plant lipids are an important source of ration for cattle or other livestock animals to fulfil their energy needs. Poor energy containing green forages are still one of the major sources of food for livestock animals, leaving the animals undernourished. This lowers the milk and meat production efficiency, thereby affecting human consumption. Oleosin, an essential oil body surface protein, is capable of enhancing and stabilizing the lipid content in plants. We identified and functionally characterized three forage sorghum oleosin genes (SbOle1, SbOle2, and SbOle3) in Arabidopsis and yeast. Phylogenetic analysis of SbOle proteins showed a close relationship with rice and maize oleosins. Expression analysis of SbOle genes determined a higher expression pattern in embryo followed by endosperm, while its expression in the non-seed tissues remained negligible. Overexpression of SbOle genes in Arabidopsis ole1-deficient mutants showed restoration of normal germination whereas control mutant seeds showed lower germination rates. Heterologous overexpression of SbOle in yeast cells resulted in increased TAG accumulation. Additionally, the TAG turnover assay showed the effectiveness of SbOle genes in reducing the yeast endogenous and rumen bacterial lipase-mediated TAG degradation. Taken together, our findings not only provide insights into forage sorghum oleosin for increasing the energy content in non-seed organs but also opened up the direction towards implication of oleosin in rumen protection of fodders.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sorghum , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bovinos , Filogenia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Sementes/genética , Sorghum/genética , Triglicerídeos
11.
Cutan Ocul Toxicol ; 40(3): 221-231, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34003048

RESUMO

INTRODUCTION: Oil body (OB), a subcellular organelle that stores oil in plant seeds, is considered a new transdermal drug delivery system. With the increasing understanding of the OB and its main protein (oleosin), numerous studies have been conducted on OB as "carrier" for the expression of exogenous proteins. In our previous study, oil body fused with aFGF (OLAF) was obtained using a plant oil body expression system that had been preliminarily proven to be effective in accelerating the healing of skin wounds. However, no dermal toxicological information on OLAF is available. OBJECTIVE: To ensure the dermal safety of OLAF, a series of tests (the acute dermal toxicity test, 21-day repeat dermal toxicity test, dermal irritation test and skin sensitisation test) were conducted after optimising the extraction protocol of OLAF. MATERIALS AND METHODS: To improve the extraction rate of OLAF, response surface methodology (RSM) was first employed to optimise the extraction conditions. Then, Wistar rats were exposed to OLAF (400 mg·kg-1 body weight) in two different ways (6 hours/time for 24 hours and 1 time/day for 21 days) to evaluate the acute dermal toxicity and 21-day repeated dermal toxicity of OLAF. In the acute dermal toxicity test, clinical observations were conducted to evaluate the toxicity, behaviour, and health of the animals for 14 consecutive days. Similarly, the clinical signs, body weight, haematological and biochemical parameters, histopathological changes and other indicators were also detected during the 21 days administration. For the dermal irritation test, single and multiple doses of OLAF (125 mg·kg-1 body weight) were administered to albino rabbits for 14 days (1 time/day). The irritation reaction on the skin of each albino rabbit was recorded and scored. Meanwhile, skin sensitisation to OLAF was conducted using guinea pigs for a period of 28 days. RESULTS: Suitable extraction conditions for OLAF (PBS concentration 0.01, pH of PBS 8.6, solid-liquid ratio 1:385 g·mL-1) were obtained using RSM. Under these conditions, the extraction rate and particle size of OLAF were 7.29% and 1290 nm, respectively. In the tests of acute dermal toxicity and 21-day repeated dermal toxicity, no mortality or significant differences were observed in terms of clinical signs, body weight, haematological parameters, biochemical parameters and anatomopathological analysis. With respect to the dermal irritation test and skin sensitisation test, no differences in erythema, oedema or other abnormalities were observed between treatment and control groups on gross and histopathological examinations. CONCLUSIONS: The results of this study suggest that OLAF does not cause obvious toxicity, skin sensitisation or irritation in animals.


Assuntos
Portadores de Fármacos/toxicidade , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Gotículas Lipídicas , Óleos de Plantas/isolamento & purificação , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Feminino , Fator 1 de Crescimento de Fibroblastos/toxicidade , Cobaias , Masculino , Óleos de Plantas/toxicidade , Coelhos , Ratos , Testes Cutâneos , Testes de Toxicidade Aguda , Cicatrização/efeitos dos fármacos
12.
Cutan Ocul Toxicol ; 40(1): 45-53, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33438439

RESUMO

Objective: The expression of therapeutic proteins in plant oil body bioreactors has attracted much attention. But its safety is not yet clear. This article determines the risk of safety after using the drug. Methods: The oil body-linked oleosin-hEGF microgel emulsion (OBEME) was prepared by mixing the xanthan gum with suitable concentrations in an appropriate proportion. Skin irritation and sensitization reaction were investigated in rats and guinea pigs using OBEME as test article.Results: The OBEME did not produce dermal erythema/eschar or oedema responses. The dermal subacute and subchronic toxicity of OBEME were evaluated in accordance with OECD guidelines. Compared with the control group, the basic physical signs, such as weight, feed, drinking, excretion, and behaviour of experimental animals, were not abnormal. In addition, no abnormality was found in haematological parameters, biochemical indexes, relative organ weight, and histopathological observation of organs, and there was no significant difference compared with normal saline treatment group. Therefore, we conclude that OBEME has no toxic effects and is safe and reliable to be used for topical application.


Assuntos
Portadores de Fármacos/toxicidade , Fator de Crescimento Epidérmico/toxicidade , Proteínas de Plantas/toxicidade , Proteínas Recombinantes de Fusão/toxicidade , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Reatores Biológicos/efeitos adversos , Carthamus tinctorius/genética , Dermatite de Contato/diagnóstico , Dermatite de Contato/etiologia , Dermatite de Contato/patologia , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Emulsões , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/genética , Eritema/induzido quimicamente , Eritema/diagnóstico , Cobaias , Humanos , Gotículas Lipídicas/química , Masculino , Microgéis , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Pele/imunologia , Pele/lesões , Pele/patologia , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Subaguda/métodos , Testes de Toxicidade Subcrônica/métodos , Cicatrização/efeitos dos fármacos
13.
Plant J ; 100(6): 1132-1147, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31437323

RESUMO

As Oryza sativa (rice) seeds represent food for over three billion people worldwide, the identification of genes that enhance grain size and composition is much desired. Past reports have indicated that Arabidopsis thaliana acyl-CoA-binding proteins (ACBPs) are important in seed development but did not affect seed size. Herein, rice OsACBP2 was demonstrated not only to play a role in seed development and germination, but also to influence grain size. OsACBP2 mRNA accumulated in embryos and endosperm of germinating seeds in qRT-PCR analysis, while ß-glucuronidase (GUS) assays on OsACBP2pro::GUS rice transformants showed GUS expression in embryos, as well as the scutellum and aleurone layer of germinating seeds. Deletion analysis of the OsACBP2 5'-flanking region revealed five copies of the seed cis-element, Skn-I-like motif (-1486/-1482, -956/-952, -939/-935, -826/-822, and -766/-762), and the removal of any adversely affected expression in seeds, thereby providing a molecular basis for OsACBP2 expression in seeds. When OsACBP2 function was investigated using osacbp2 mutants and transgenic rice overexpressing OsACBP2 (OsACBP2-OE), osacbp2 was retarded in germination, while OsACBP2-OEs performed better than the wild-type and vector-transformed controls, in germination, seedling growth, grain size and grain weight. Transmission electron microscopy of OsACBP2-OE mature seeds revealed an accumulation of oil bodies in the scutellum cells, while confocal laser scanning microscopy indicated oil accumulation in OsACBP2-OE aleurone tissues. Correspondingly, OsACBP2-OE seeds showed gain in triacylglycerols and long-chain fatty acids over the vector-transformed control. As dietary rice bran contains beneficial bioactive components, OsACBP2 appears to be a promising candidate for enriching seed nutritional value.


Assuntos
Acil Coenzima A/metabolismo , Proteínas de Transporte/metabolismo , Grão Comestível/crescimento & desenvolvimento , Oryza/metabolismo , Óleo de Farelo de Arroz/metabolismo , Acil Coenzima A/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Sequência de Bases , Proteínas de Transporte/genética , Grão Comestível/metabolismo , Endosperma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plântula/genética , Sementes/citologia , Sementes/genética , Sementes/metabolismo
14.
J Exp Bot ; 71(10): 2854-2861, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32080724

RESUMO

Autophagy is a universal mechanism that facilitates the degradation of unwanted cytoplasmic components in eukaryotic cells. In this review, we highlight recent developments in the investigation of the role of autophagy in lipid homeostasis in plants by comparison with algae, yeast, and animals. We consider the storage compartments that form the sources of lipids in plants, and the roles that autophagy plays in the synthesis of triacylglycerols and in the formation and maintenance of lipid droplets. We also consider the relationship between lipids and the biogenesis of autophagosomes, and the role of autophagy in the degradation of lipids in plants.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Autofagossomos , Lipídeos , Plantas
15.
Mar Drugs ; 18(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155832

RESUMO

Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and ß-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.


Assuntos
Sedimentos Geológicos/química , Microalgas/química , Rhizophoraceae/química , Estramenópilas/química , Austrália , Biomassa , Carotenoides/química , Carotenoides/farmacologia , Ecossistema , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Filogenia , Polissacarídeos/química
16.
J Exp Bot ; 70(19): 5173-5187, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173102

RESUMO

The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.


Assuntos
Ácido Abscísico/metabolismo , Gotículas Lipídicas/metabolismo , Oxirredutases/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Riboflavina/genética , Zea mays/genética , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Pirimidinas/metabolismo , Riboflavina/biossíntese , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
J Food Sci Technol ; 56(1): 49-58, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30728546

RESUMO

The objective of this study was to determine the effects of pH on the physicochemical properties of soybean oil bodies (SBOBs), peanut oil bodies (PNOBs) and sunflower oil bodies (SFOBs). The mean particle diameter[4,3] (D[4,3]) of oil bodies (OBs) changed to a stationary trend with increased pH. The surface hydrophobicity (H0) of SBOBs, PNOBs and SFOBs significantly decreased with increasing pH 2-12. The emulsifying activity index of SBOBs, PNOBs and SFOBs decreased with increased pH from 2 to 10. The viscosity modulus (G″) value of SBOBs at pH 4 was significantly higher than at pH 7 and pH 9. The initial elastic modulus (G') and G″ values of PNOBs at pH 9 were significantly higher than at pH 4 and pH 7. The G″ values of SFOBs at pH 4 and pH 9 were significantly lower than at pH 7. The steroleosin protein bands of SBOBs significantly decreased at pH 12. The protein bands of PNOBs were reduced at pH 2-4 and pH 10-12, and protein bands decreased most obviously at pH 2. The enthalpy of denaturation (ΔH) values of the oil body (OB) protein at pH 9 were significantly higher than at pH 4 and pH 7. The results showed that the ζ-potential, D[4,3], emulsifying property and H0 of SBOBs, PNOBs and SFOBs were similar to the change of pH value. The three types of OBs have better stability away from the isoelectric point.

18.
BMC Biotechnol ; 18(1): 51, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157831

RESUMO

BACKGROUND: Fibroblast growth factor 9 (FGF9) is a heparin-binding growth factor, secreted by both mesothelial and epithelial cells, which participates in hair follicle regeneration, wound healing, and bone development. A suitable source of recombinant human FGF9 (rhFGF9) is needed for research into potential clinical applications. We present that expression of oleosin-rhFGF9 fusion protein in safflower (Carthamus tinctorius L.) seeds stimulates hair growth and wound healing. RESULTS: The oleosin-rhFGF9 expressed in safflower seeds, in which it localizes to the surface of oil bodies. The expression of oleosin-rhFGF9 was confirmed by polyacrylamide gel electrophoresis and western blotting. According to BCA and Enzyme-linked immunosorbent assay (ELISA) assay, the results show that the expression level of oleosin-rhFGF9 was 0.14% of oil body protein. The oil body bound oleosin-rhFGF9 showed mitogenic activity towards NIH3T3 cells in a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The efficacy of oil body bound oleosin-rhFGF9 in promoting hair growth and wound healing was investigated in C57BL/6 mice. In a hair regeneration experiment, 50 µg/µl oil body bound oleosin-rhFGF9 was applied to the dorsal skin of mice in the resting phase of the hair growth cycle. After 15 days, thicker hair and increased number of new hairs were seen compared with controls. Furthermore, the number of new hairs was greater compared with rhFGF9-treated mice. The hair follicles of mice treated with oil body bound oleosin-rhFGF9 expressed ß-catenin more abundantly. In a wound healing experiment, dorsal skin wounds were topically treated with 50 µg/µl oil body bound oleosin-rhFGF9. Wound healing was quicker compared with mice treated with rhFGF9 and controls, especially in the earlier stages of healing. CONCLUSIONS: The oil body bound oleosin-rhFGF9 promotes both hair growth and wound healing. It appears to promote hair growth, at least in part, by up-regulating ß-catenin expression. The potential of oil body bound oleosin-rhFGF9 as an external drug can treat the alopecia and wounds or use in further clinical application.


Assuntos
Carthamus tinctorius/genética , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Cabelo/crescimento & desenvolvimento , Gotículas Lipídicas/metabolismo , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/genética , Ferimentos e Lesões/tratamento farmacológico , Animais , Carthamus tinctorius/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Cabelo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cicatrização , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/fisiopatologia , beta Catenina/genética , beta Catenina/metabolismo
19.
Planta ; 248(1): 89-103, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29589146

RESUMO

MAIN CONCLUSION: Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves. Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark-light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.


Assuntos
Aciltransferases/genética , Gotículas Lipídicas/enzimologia , Vitis/metabolismo , Aciltransferases/metabolismo , Arabidopsis/genética , Western Blotting , Cromatografia Líquida de Alta Pressão , Genes de Plantas/genética , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Vacúolos/enzimologia , Vitis/enzimologia , Vitis/genética
20.
New Phytol ; 217(3): 1062-1076, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29178188

RESUMO

Similar to seeds, pollen tubes contain lipid droplets that store triacylglycerol (TAG), but the fate of this TAG as well as the enzymes involved in its breakdown are unknown. Therefore, two potential TAG lipases from tobacco and Arabidopsis, NtOBL1 (Oil body lipase 1) and AtOBL1, were investigated, especially with respect to their importance for pollen tube growth. We expressed NtOBL1 and AtOBL1 as fluorescent fusion proteins to study their localization by confocal microscopy. Furthermore, we overexpressed AtOBL1 in Nicotiana benthamiana leaves to characterize it enzymatically. The obl1 mutant was studied in respect to its pollen tube growth in vivo and its seed germination. Both NtOBL1 and AtOBL1 localized to lipid droplets. AtOBL1 was abundant in pollen tubes and seedlings, and acted as a lipase on TAG, diacylglycerol and 1-monoacylglycerol at a pH optimum of 5.5. The obl1 mutant was hampered in pollen tube growth, whereas seedling establishment was not affected under optimal conditions, even though AtOBL1 accounted for a major lipase activity in seeds. TAG could be a direct precursor for the synthesis of membrane lipids in pollen tubes and proteins of the OBL family involved in the flux of acyl groups.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Lipase/genética , Fosfolipídeos/metabolismo , Plantas Geneticamente Modificadas , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Sementes/metabolismo , Nicotiana/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa