Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892263

RESUMO

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mucosa Olfatória/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Humanos
2.
J Biol Chem ; 295(50): 17100-17113, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33040025

RESUMO

Carnosine (ß-alanyl-l-histidine) and anserine (ß-alanyl-3-methyl-l-histidine) are abundant peptides in the nervous system and skeletal muscle of many vertebrates. Many in vitro and in vivo studies demonstrated that exogenously added carnosine can improve muscle contraction, has antioxidant activity, and can quench various reactive aldehydes. Some of these functions likely contribute to the proposed anti-aging activity of carnosine. However, the physiological role of carnosine and related histidine-containing dipeptides (HCDs) is not clear. In this study, we generated a mouse line deficient in carnosine synthase (Carns1). HCDs were undetectable in the primary olfactory system and skeletal muscle of Carns1-deficient mice. Skeletal muscle contraction in these mice, however, was unaltered, and there was no evidence for reduced pH-buffering capacity in the skeletal muscle. Olfactory tests did not reveal any deterioration in 8-month-old mice lacking carnosine. In contrast, aging (18-24-month-old) Carns1-deficient mice exhibited olfactory sensitivity impairments that correlated with an age-dependent reduction in the number of olfactory receptor neurons. Whereas we found no evidence for elevated levels of lipoxidation and glycation end products in the primary olfactory system, protein carbonylation was increased in the olfactory bulb of aged Carns1-deficient mice. Taken together, these results suggest that carnosine in the olfactory system is not essential for information processing in the olfactory signaling pathway but does have a role in the long-term protection of olfactory receptor neurons, possibly through its antioxidant activity.


Assuntos
Envelhecimento/metabolismo , Carnosina/metabolismo , Contração Muscular , Peptídeo Sintases/deficiência , Receptores Odorantes/metabolismo , Envelhecimento/genética , Animais , Carnosina/genética , Camundongos , Camundongos Knockout , Músculo Esquelético , Peptídeo Sintases/metabolismo , Receptores Odorantes/genética
3.
Biochem Biophys Res Commun ; 495(1): 533-538, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097202

RESUMO

Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by ß-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of ß-amyloid (Aß) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aß accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aß*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/biossíntese , Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos
4.
Front Neuroanat ; 17: 1157224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113675

RESUMO

Introduction: The olfactory epithelium (OE) and olfactory bulb (OB) are the major components of the olfactory system and play critical roles in olfactory perception. However, the embryonic development of OE and OB by using the olfactory specific genes has not been comprehensively investigated yet. Most previous studies were limited to a specific embryonic stage, and very little is known, till date, about the development of OE. Methods: The current study aimed to explore the development of mouse olfactory system by spatiotemporal analysis of the histological features by using the olfactory specific genes of olfactory system from the prenatal to postnatal period. Results: We found that OE is divided into endo-turbinate, ecto-turbinate, and vomeronasal organs, and that putative OB with putative main and accessory OB is formed in the early developmental stage. The OE and OB became multilayered in the later developmental stages, accompanied by the differentiation of olfactory neurons. Remarkably, we found the development of layers of olfactory cilia and differentiation of OE to progress dramatically after birth, suggesting that the exposure to air may facilitate the final development of OE. Discussion: Overall, the present study laid the groundwork for a better understanding of the spatial and temporal developmental events of the olfactory system.

5.
J Agric Food Chem ; 66(51): 13346-13366, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30453735

RESUMO

Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants. In this review, selected recent examples will be presented of "deorphaned" mammalian receptors, where the OR ligands (odorants) as well as key aspects of receptor-odorant interactions were identified using odorant-mediated receptor activation data together with site-directed mutagenesis and molecular modeling. Based on cumulative evidence from OR deorphaning and olfactory receptor neuron activation studies, a receptor-ligand docking model rather than an alternative bond vibration model is suggested to best explain the molecular basis of the exquisitely sensitive odor discrimination in mammals.


Assuntos
Mamíferos/metabolismo , Odorantes/análise , Receptores Odorantes/metabolismo , Animais , Humanos , Mamíferos/genética , Modelos Moleculares , Neurônios Receptores Olfatórios , Receptores Odorantes/química , Receptores Odorantes/genética , Olfato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa