Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(12): e2208954, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36647621

RESUMO

Spin-orbit torque (SOT)-induced switching of perpendicular magnetization in the absence of magnetic field is crucial for the application of SOT-based spintronic devices. Recent works have demonstrated that the low-symmetry crystal structure in CuPt/CoPt can give rise to an out-of-plane (OOP) spin torque and lead to deterministic magnetization switching without an external field. However, it is essential to improve OOP effective field for the efficient switching. In this work, the impact of interface oxidation on the generation of OOP effective field in a CuPt/ferromagnet heterostructure is systematically studied. By introducing an oxidized CuPt surface, it is found that the field-free switching performance shows remarkable improvement. OOP effective field measurement indicates that the oxidation treatment can enhance the OOP effective field by more than two times. It is also demonstrated that this oxidation-induced OOP SOT efficiency enhancement is independent of the device shapes, magnetic materials, or magnetization easy axis. This work contributes to improve the performance of SOT devices and provides an effective fabrication guidance for future spintronic devices that utilize OOP SOT.

2.
ACS Appl Mater Interfaces ; 14(7): 9781-9787, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35147025

RESUMO

Field-free magnetization switching is critical towards practical, integrated spin-orbit torque (SOT)-driven magnetic random-access memory with perpendicular magnetic anisotropy. Our work proposes a technique to modulate the spin reflection and spin density of states within a heavy-metal Pt through interfacing with a dielectric MgO layer. We demonstrate tunability of the effective out-of-plane spin torque acting on the ferromagnetic Co layer, enabling current-induced SOT magnetization switching without the assistance of an external magnetic field. The influence of the MgO layer thickness on effective SOT efficiency shows saturation at 4 nm, while up to 80% of field-free magnetization switching ratio is achieved with the MgO between 5 and 8 nm. We analyze and attribute the complex interaction to spin reflection at the dielectric/heavy metal interface and spin scattering within the dielectric medium due to interfacial electric fields. Further, through substituting the dielectric with Ti or Pt, we confirm that the MgO layer is indeed responsible for the observed field-free magnetization switching mechanism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa