RESUMO
Intracellular pathogens exploit cellular resources through host cell manipulation. Within its nonfusogenic parasitophorous vacuole (PV), Toxoplasma gondii targets host nutrient-filled organelles and sequesters them into the PV through deep invaginations of the PV membrane (PVM) that ultimately detach from this membrane. Some of these invaginations are generated by an intravacuolar network (IVN) of parasite-derived tubules attached to the PVM. Here, we examined the usurpation of host ESCRT-III and Vps4A by the parasite to create PVM buds and vesicles. CHMP4B associated with the PVM/IVN, and dominant-negative (DN) CHMP4B formed many long PVM invaginations containing CHMP4B filaments. These invaginations were shorter in IVN-deficient parasites, suggesting cooperation between the IVN and ESCRT. In infected cells expressing Vps4A-DN, enlarged intra-PV structures containing host endolysosomes accumulated, reflecting defects in PVM scission. Parasite mutants lacking T. gondii (Tg)GRA14 or TgGRA64, which interact with ESCRT, reduced CHMP4B-DN-induced PVM invaginations and intra-PV host organelles, with greater defects in a double knockout, revealing the exploitation of ESCRT to scavenge host organelles by Toxoplasma.
Assuntos
Toxoplasma , Animais , Toxoplasma/metabolismo , Vacúolos/metabolismo , Interações Hospedeiro-Parasita , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismoRESUMO
Many intracellular pathogens, including the protozoan parasite Toxoplasma gondii, live inside a vacuole that resides in the host cytosol. Vacuolar residence provides these pathogens with a defined niche for replication and protection from detection by host cytosolic pattern recognition receptors. However, the limiting membrane of the vacuole, which constitutes the host-pathogen interface, is also a barrier for pathogen effectors to reach the host cytosol and for the acquisition of host-derived nutrients. This review provides an update on the specialized secretion and trafficking systems used by Toxoplasma to overcome the barrier of the parasitophorous vacuole membrane and thereby allow the delivery of proteins into the host cell and the acquisition of host-derived nutrients.
Assuntos
Citosol/metabolismo , Interações Hospedeiro-Parasita , Nutrientes/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Citosol/parasitologia , Humanos , Redes e Vias Metabólicas , Transporte Proteico , Toxoplasma/patogenicidade , Vacúolos/parasitologia , Fatores de Virulência/metabolismoRESUMO
Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3. Here, we used N-terminal amine isotopic labeling of substrates to identify novel ASP5 cleavage products by comparing the N-terminome of wild-type and Δasp5 lines in tachyzoites and bradyzoites. Validated substrates reside within the PV or PVM in an ASP5-dependent manner. Remarkably, Δasp5 bradyzoites are impaired in the formation of the cyst wall in vitro and exhibit a considerably reduced cyst burden in chronically infected animals. More specifically two-photon serial tomography of infected mouse brains revealed a comparatively reduced number and size of the cysts throughout the establishment of persistence in the absence of ASP5.
Assuntos
Ácido Aspártico Proteases , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Ácido Aspártico Proteases/metabolismo , Proteínas de Protozoários/metabolismo , Infecção Persistente , Vacúolos/metabolismo , Ácido Aspártico Endopeptidases/metabolismoRESUMO
To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell soluble N-ethylmaleimide-sensitive-factor attachment protein receptor proteins to the expansion and functionality of communal vacuoles as well as the replication of the parasite. The differential patterns of recruitment of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor to communal vacuoles harboring Leishmania amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to the optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither protein has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.
Assuntos
Leishmania mexicana , Leishmania , Animais , Habitação , Leishmania/fisiologia , Macrófagos/metabolismo , Mamíferos , Vacúolos/parasitologia , Proteína 3 Associada à Membrana da Vesícula/metabolismoRESUMO
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Assuntos
Biogênese de Organelas , Organelas/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidade , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Virulência , Animais , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Organelas/ultraestrutura , Plasmodium/ultraestrutura , Transporte Proteico , Proteínas de Protozoários/metabolismo , Toxoplasma/ultraestrutura , Toxoplasmose/parasitologiaRESUMO
Leishmania (L.) amazonensis is one of the species responsible for the development of cutaneous leishmaniasis in South America. After entering the vertebrate host, L. (L.) amazonensis invades mainly neutrophils, macrophages and dendritic cells. Studies have shown that gal-3 acts as a pattern recognition receptor. However, the role of this protein in the context of L. (L.) amazonensis infection remains unclear. Here, we investigated the impact of gal-3 expression on experimental infection by L. (L.) amazonensis. Our data showed that gal-3 plays a role in controlling parasite invasion, replication and the formation of endocytic vesicles. Moreover, mice with gal-3 deficiency showed an exacerbated inflammatory response. Taken together, our data shed light to a critical role of gal-3 in the host response to infection by L. (L.) amazonensis.
Assuntos
Galectina 3/metabolismo , Leishmania/metabolismo , Leishmaniose Cutânea/metabolismo , Animais , Feminino , Galectina 3/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single-pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR-DOZI-aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S-transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore-forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.
Assuntos
Antígenos de Protozoários/imunologia , Parasitos/genética , Parasitos/metabolismo , Vacúolos/parasitologia , Animais , Antígenos de Protozoários/genética , Edição de Genes , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismoRESUMO
We conducted a study to decipher the mechanism of the formation of the large communal Leishmania amazonensis-containing parasitophorous vacuole (PV) and found that the macrophage microtubule (MT) network dynamically orchestrates the intracellular lifestyle of this intracellular parasite. Physical disassembly of the MT network of macrophage-like RAW 264.7 cells or silencing of the dynein gene, encoding the MT-associated molecular motor that powers MT-dependent vacuolar movement, by siRNA resulted in most of the infected cells hosting only tight parasite-containing phagosome-like vacuoles randomly distributed throughout the cytoplasm, each insulating a single parasite. Only a minority of the infected cells hosted both isolated parasite-containing phagosome-like vacuoles and a small communal PV, insulating a maximum of two to three parasites. The tight parasite-containing phagosome-like vacuoles never matured, whereas the small PVs only matured to a small degree, shown by the absence or faint acquisition of host-cell endolysosomal characteristics. As a consequence, the parasites were unable to successfully complete promastigote-to-amastigote differentiation and died, regardless of the type of insulation.
Assuntos
Leishmania mexicana/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Microtúbulos/metabolismo , Vacúolos/parasitologia , Animais , Diferenciação Celular , Camundongos , Microtúbulos/genética , Células RAW 264.7 , RNA Interferente PequenoRESUMO
Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.
Assuntos
Malária Falciparum/genética , Plasmodium falciparum/genética , Serina Proteases/química , Subtilisina/genética , Sequência de Aminoácidos/genética , Animais , Eritrócitos/parasitologia , Genoma/genética , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Plasmodium falciparum/patogenicidade , Proteólise , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Serina Proteases/genética , Subtilisina/química , Vacúolos/parasitologiaRESUMO
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Assuntos
Malária Falciparum , Malária , Eritrócitos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Plasmodium falciparum , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND: Cryptosporidium is a genus of apicomplexan parasites, the causative agents of cryptosporidiosis in humans and/or animals. Although most apicomplexans parasitize within the host cell cytosols, Cryptosporidium resides on top of host cells, but it is embraced by a double-layer parasitophorous vacuole membrane derived from host cell. There is an electron-dense band to separate the parasite from host cell cytoplasm, making it as an intracellular but extracytoplasmic parasite. However, little is known on the molecular machinery at the host cell-parasite interface. METHODS: Cryptosporidium parvum at various developmental stages were obtained by infecting HCT-8 cells cultured in vitro. Immunofluorescence assay was used to detect CpEF1α with a polyclonal antibody and host cell F-actin with rhodamine-phalloidin. Recombinant CpEF1α protein was used to evaluate its effect on the invasion by the parasite. RESULTS: We discovered that a C parvum translation elongation factor 1α (CpEF1α) was discharged from the invading sporozoites into host cells, forming a crescent-shaped patch that fully resembles the electron-dense band. At the same time, host cell F-actin aggregated to form a globular-shaped plug beneath the CpEF1α patch. The CpEF1α patch remained for most of the time but became weakened and dissolved upon the completion of the invasion process. In addition, recombinant CpEF1α protein could effectively interfere the invasion of sporozoites into host cells. CONCLUSIONS: CpEF1α plays a role in the parasite invasion by participating in the formation of electron-dense band at the base of the parasite infection site.
Assuntos
Criptosporidiose/parasitologia , Cryptosporidium parvum/metabolismo , Interações Hospedeiro-Parasita , Fator 1 de Elongação de Peptídeos/metabolismo , Actinas/metabolismo , Animais , Expressão Gênica , Humanos , Microscopia de Fluorescência , CoelhosRESUMO
Trypanosoma cruzi has a complex life cycle where two infective developmental stages, known as trypomastigote and amastigote, can be found in the vertebrate host. Both forms can invade a large variety of cellular types and induce the formation of a parasitophorous vacuole (PV), that, posteriorly, disassembles and releases the parasites into the host cell cytoplasm. The biogenesis of T. cruzi PVs has not been analyzed in professional phagocytic cells. We investigated the biogenesis of PVs containing trypomastigotes or amastigotes in peritoneal macrophages. We observed the presence of profiles of the endoplasmic reticulum and lysosomes from the host cell near PVs at early stages of interaction in both developmental stages, suggesting that both organelles may participate as possible membrane donors for the formation of the PVs. The Golgi complex, however, was observed only near already formed PVs. Electron microscopy tomography and FIB-SEM microscopy followed by 3D reconstruction of entire PVs containing amastigotes or trypomastigotes confirmed the presence of both endoplasmic reticulum and lysosomes in the initial stages of PV formation. In addition, Golgi complex and mitochondria localize around PVs during their biogenesis. Taken together these observations provide a whole view of the invasion process in a professional phagocytic cell.
Assuntos
Macrófagos/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Lisossomos/metabolismo , Camundongos , Organelas/metabolismo , Vacúolos/metabolismoRESUMO
Eimeria tenella microneme-1 protein (EtMIC1) has been proposed to be a transmembrane protein, but this characteristic has not yet been confirmed experimentally. Furthermore, despite EtMIC1 being an important candidate antigen, its key epitope has not been reported. Here, two linear B-cell epitopes of EtMIC1, 91LITFATRSK99 and 698ESLISAGE705, were identified by Western blotting using specific monoclonal antibodies (MAbs) and were named epitope I (located in the I-domain) and epitope CTR (located in the CTR domain), respectively. Sequence comparative analyses of these epitopes among Eimeria species that infect chickens showed that epitope I differs greatly across species, whereas epitope CTR is relatively conserved. Point mutation assay results indicate that all the amino acid residues of the epitopes recognized by MAb 1-A1 or 1-H2 are key amino acids involved in recognition. Comparative analyses of indirect immunofluorescence assay (IFA) results for MAbs 1-A1 and 1-H2 under both nonpermeabilization and permeabilization conditions indicate that epitope I is located on the outer side of the sporozoite surface membrane whereas epitope CTR is located on the inner side, together providing experimental evidence that EtMIC1 is a transmembrane protein. IFA also labeled the EtMIC1 protein on the parasitophorous vacuole membrane and on the surface of schizonts, which suggests that the EtMIC1 protein may play an important role in parasitophorous vacuole formation and E. tenella development. Immunoprotective efficacy experiments revealed that epitope I has good immunogenicity, as evidenced by its induction of high serum antibody levels, blood lymphocyte proliferation, and CD4+ blood lymphocyte percentage.
Assuntos
Anticorpos Monoclonais , Eimeria tenella/metabolismo , Epitopos , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários/imunologia , Galinhas , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/veterinária , Eimeria tenella/genética , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Aves Domésticas/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genéticaRESUMO
Because Plasmodium falciparum replicates inside of a parasitophorous vacuole (PV) within a human erythrocyte, parasite egress requires the rupture of two limiting membranes. Parasite Ca2+ , kinases, and proteases contribute to efficient egress; their coordination in space and time is not known. Here, the kinetics of parasite egress were linked to specific steps with specific compartment markers, using live-cell microscopy of parasites expressing PV-targeted fluorescent proteins, and specific egress inhibitors. Several minutes before egress, under control of parasite [Ca2+ ]i , the PV began rounding. Then after ~1.5 min, under control of PfPKG and SUB1, there was abrupt rupture of the PV membrane and release of vacuolar contents. Over the next ~6 min, there was progressive vacuolar membrane deterioration simultaneous with erythrocyte membrane distortion, lasting until the final minute of the egress programme when newly formed parasites mobilised and erythrocyte membranes permeabilised and then ruptured-a dramatic finale to the parasite cycle of replication.
Assuntos
Membrana Eritrocítica/parasitologia , Eritrócitos/patologia , Eritrócitos/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Vacúolos/parasitologia , Cálcio/metabolismo , Corantes Fluorescentes , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Plasmodium falciparum/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Vacúolos/metabolismoRESUMO
As the tachyzoite form of Toxoplasma gondii divides inside the parasitophorous vacuole, the daughter cells remain attached to each other at the posterior end through the so-called residual body (RB). Here, we studied this process using field emission scanning electron microscopy of dry scraped infected cells, transmission electron microscopy of random ultrathin sections, X-ray microanalysis, and 3-D modelling of tomographic volumes and slice and view series obtained by FIB SEM at 7, 24, and 48â¯h post infection. Combining these methods of observation, we traced a timeline of events for the formation, development, and fate of the RB. The RB is formed as the first endodyogenic division is complete. Before that, finger-like invaginations at the posterior end of the tachyzoite secrete tubules from the intravacuolar network. The RB is roughly spherical and measures 1⯵m in diameter at random. Its size does not vary considerably as the division cycles that form the rosette proceed. The contents of the RB are similar to the cytoplasm of the parasites. It contains ER membranous profiles and vacuolar structures identified as acidocalcisomes. This was confirmed by microanalysis. Mitochondrial profiles seen inside the RB are actually branches of mother cell mitochondrion not yet split between the two daughter cells. Acidocalcisomes of a mother cell are distributed between the two daughter cells, but as the rosette of parasites grow, acidocalcisomes seem to concentrate inside the RB where they are usually larger and tend to fuse to each other, filling most of the space in the RB. Here we hypothesize that, upon egress, the acidocalcisomes would ultimately fuse with the RB membrane liberating its contents inside the parasitophorous vacuole (PV) and, by doing so; the RB would disintegrate, releasing its contents in the PV.
Assuntos
Toxoplasma/crescimento & desenvolvimento , Toxoplasma/ultraestrutura , Animais , Linhagem Celular , Microanálise por Sonda Eletrônica , Imageamento Tridimensional , Macaca mulatta , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Nanotubos/ultraestrutura , Inoculações SeriadasRESUMO
Malaria blood stage parasites develop within red blood cells where they are contained in a vacuolar compartment known as the parasitophorous vacuole (PV). This compartment holds a key role in the interaction of the parasite with its host cell. However, the proteome of this compartment has so far not been comprehensively analysed. Here we used BioID in asexual blood stages of the most virulent human malaria parasite Plasmodium falciparum to identify new proteins of the PV. The resulting proteome contained many of the already known PV proteins and validation by GFP-knock-in of 10 previously in P. falciparum uncharacterised hits revealed 5 new PV proteins and two with a partial PV localisation. This included proteins peripherally attached to the inner face of the PV membrane as well as proteins anchored in the parasite plasma membrane that protrude into the PV. Using selectable targeted gene disruption we generated mutants for 2 of the 10 candidates. In contrast we could not select parasites with disruptions for another 3 candidates, strongly suggesting that they are important for parasite growth. Interestingly, one of these included the orthologue of UIS2, a protein previously proposed to regulate protein translation in the parasite cytoplasm but here shown to be an essential PV protein. This work extends the number of known PV proteins and provides a starting point for further functional analyses of this compartment.
Assuntos
Plasmodium falciparum/química , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Biotinilação , Membrana Celular/metabolismo , Eritrócitos/parasitologia , Técnicas de Introdução de Genes , Humanos , Membranas Intracelulares/metabolismo , Estágios do Ciclo de Vida , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteoma/genética , Proteínas de Protozoários/genética , Vacúolos/química , Vacúolos/parasitologiaRESUMO
Leishmaniasis is transmitted by sand flies leading to parasite inoculation into skin. In the mammalian host, the parasite primarily resides in skin macrophages (MΦ) and dendritic cells (DC). MΦ are silently invaded by the parasite eliciting a stress response, whereas DC become activated, release IL-12, and prime antigen-specific T cells. Here we review the basics of the immune response against this human pathogen and elucidate the role and function DC and MΦ for establishment of protective immunity against leishmaniasis. We focus on cell type-specific differences in parasite uptake, phagocyte activation and processing of parasite antigens to facilitate an understanding how their respective function may be modulated e.g. under therapeutic considerations.
Assuntos
Células Dendríticas/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Animais , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Humanos , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Fagocitose/imunologia , Pele/imunologia , Pele/parasitologia , Vacúolos/parasitologiaRESUMO
Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane-bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite-encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium.
Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Canais de Translocação SEC/metabolismo , Vacúolos/metabolismo , Células Cultivadas , Eritrócitos/parasitologia , Humanos , Dobramento de Proteína , Transporte Proteico , Vacúolos/parasitologiaRESUMO
Plasmodium parasites must invade erythrocytes in order to cause the disease malaria. The invasion process involves the coordinated secretion of parasite proteins from apical organelles that include the rhoptries. The rhoptry is comprised of two compartments: the neck and the bulb. Rhoptry neck proteins are involved in host cell adhesion and formation of the tight junction that forms between the invading parasite and erythrocyte, whereas the role of rhoptry bulb proteins remains ill-defined due to the lack of functional studies. In this study, we show that the rhoptry-associated protein (RAP) complex is not required for rhoptry morphology or erythrocyte invasion. Instead, post-invasion when the parasite is bounded by a parasitophorous vacuolar membrane (PVM), the RAP complex facilitates the survival of the parasite in its new intracellular environment. Consequently, conditional knockdown of members of the RAP complex leads to altered PVM structure, delayed intra-erythrocytic growth, and reduced parasitaemias in infected mice. This study provides evidence that rhoptry bulb proteins localising to the parasite-host cell interface are not simply by-products of the invasion process but contribute to the growth of Plasmodium in vivo.
Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Patógeno , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Malária/parasitologia , Camundongos Endogâmicos BALB CRESUMO
Leishmaniasis is a term referring to a range of clinical conditions caused by protozoan parasites of the genus Leishmania, Trypanosomatidae family, Kinetoplastida order that is transmitted by the bite of certain species of mosquitoes Phlebotominae subfamily. These parasites infect hosts wild and domestic mammals, considered as natural reservoirs and can also infect humans. Leishmania are obligate intramacrophage protozoa that have exclusively intracellular life style. This suggests that the amastigotes possess mechanisms to avoid killing by host cells. Cutaneous leishmaniasis, the most common form of the disease, causes ulcers on exposed parts of the body, leading to disfigurement, permanent scars, and stigma and in some cases disability. Many studies concluded that the cytokines profile and immune system of host have fundamental role in humans and animals natural self-healing. Conventional treatments are far from ideals and the search for new therapeutic alternatives is considered a strategic priority line of research by the World Health Organization. A promising approach in the field of basic research in homeopathy is the treatment of experimental infections with homeopathic drugs prepared from natural substances associations highly diluted, which comprise a combination of several different compounds considered as useful for a symptom or disease. Therefore, this study aimed to evaluate the effect of M1, a complex homeopathic product, in macrophage-Leishmania interaction in vitro and in vivo. It was used RAW cells lineage and BALB/c mice as a host for the promastigotes of L. amazonensis (WHOM/BR/75/Josefa). Several biochemical and morphological parameters were determined. Together, the harmonic results obtained in this study indicate that, in general, the highly diluted products trigger rapid and effective responses by living organisms, cells and mice, against Leishmania, by altering cytokines profile, by NO increasing (p<0.05), by decreasing parasitic load (p<0.001), and modifying classical maturation and biogenesis of parasitophorous vacuoles (p<0.001). M1 complex decreased endocytic index (p<0.001), and the % of infected macrophages (p<0.05), preventing the development of lesions (p<0.05) caused by L. amazonensis by increasing Th1 response (p<0.05). Therefore the M1complex can be a good candidate for a complementary therapy to conventional treatments, since all the parameters observed in vitro and in vivo improved. It could be an interesting clinical tool in association to a classical anti-parasitic treatment, maybe resulting in better quality of life to the patients, with less toxicity.