Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Plant Biotechnol J ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623687

RESUMO

Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.

2.
Biotechnol Appl Biochem ; 71(1): 38-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786232

RESUMO

Bacterial isolates collected from the environment were screened for pectinolytic activity, and a strain with the highest activity was selected and identified as Bacillus subtilis Mz-12. The presence of pectin hydrolase, lyase, and esterase activities was confirmed. Pectinase was purified and characterized. Enzyme production was optimized with respect to temperature, pH, and growth medium. Enzyme stability and activity were characterized under different temperatures and pH values. The results showed that this strain was capable of producing high yields of pectinase in commercial medium (Pharmamedia) 24.6 U/mL compared to other media. The purified pectinase of 22.3 kDa produced was constitutive in nature. The isolated enzyme from this strain displayed a wide range of temperature and pH stability, with the optimal activity observed at pH 9.0 and 50°C. These results indicate that the B. subtilis Mz-12 strain is a favorable candidate for industrial enzyme production. The use of Pharmamedia is reported for first time for pectinase production.


Assuntos
Bacillus subtilis , Poligalacturonase , Poligalacturonase/química , Temperatura , Concentração de Íons de Hidrogênio
3.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474547

RESUMO

Enzymatic hydrolysis using pectinase is critical for producing high-yield and quality sea buckthorn juice. This study determined the optimal temperature, time, and enzyme dosage combinations to guide manufacturers. A temperature of 60 °C, hydrolysis time of 3 h, and 0.3% enzyme dosage gave 64.1% juice yield-25% higher than without enzymes. Furthermore, monitoring physicochemical properties reveals enzyme impacts on composition. Higher dosages increase soluble solids up to 15% and soluble fiber content by 35% through cell wall breakdown. However, excessive amounts over 0.3% decrease yields. Pectin concentration also declines dose-dependently, falling by 91% at 0.4%, improving juice stability but needing modulation to retain viscosity. Electrochemical fingerprinting successfully differentiates process conditions, offering a rapid quality control tool. Its potential for commercial inline use during enzymatic treatment requires exploration. Overall, connecting optimized parameters to measured effects provides actionable insights for manufacturers to boost yields, determine enzyme impacts on nutrition/functionality, and introduce novel process analytical technology. Further investigations of health properties using these conditions could expand sea buckthorn juice functionality.


Assuntos
Hippophae , Poligalacturonase , Poligalacturonase/metabolismo , Hippophae/metabolismo , Temperatura , Frutas/química , Hidrólise
4.
Arch Microbiol ; 205(4): 130, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947219

RESUMO

The demand for enzymes is increasing continuously due to their applications in various avenues. The pectin-hydrolyzing bacteria, Cellulomonas sp. and Bacillus sp., isolated from forest soil have the potential to produce industrially important enzymes (pectinase, PGase, Cellulase, and xylanase). However, these bacteria have different optimal cultural conditions for pectinase production. The optimal cultural conditions for Cellulomonas sp. were room temperature (25-26℃), pH 7, 1% inoculum volume, and 1.5% citrus pectin with 8.82 ± 0.92 U/mL pectinase activity. And Bacillus sp. illustrated the highest pectinase activity (12.35 ± 0.72 U/mL) at room temperature, pH 10, 1% inoculum volume, and 1.5% pectin concentration. Among the different agro-wastes, the orange peel was found to be the best substrate for pectinase, PGase, and cellulase activity whereas barley straw for xylanase activity. Further, Cellulomonas sp. and Bacillus sp. illustrated higher pectinase activity from commercial pectin compared to orange peel showing their preference for commercial citrus pectin. In addition, the optimization by the Box-Behnken design increased pectinase activity for Cellulomonas sp., while a noticeable increase in activity was not observed in Bacillus sp. Besides, all the agro-wastes exploited in this study can be used for pectinase, PGase, and xylanase production but not cellulase. The study revealed that each bacteria has its specific optimal conditions and there is a variation in the capacity of utilizing the various lignocellulosic biomass.


Assuntos
Bacillus , Cellulomonas , Poligalacturonase , Biomassa , Pectinas
5.
Microb Cell Fact ; 22(1): 252, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066588

RESUMO

Pectinase is a particular type of enzyme that can break down pectin compounds and is extensively utilised in the agricultural field. In this study, twenty yeast isolates were isolated and assayed for pectinase activity. Molecular identification by PCR amplification and sequencing of internal transcribed spacer (ITS) regions of isolate no. 18 had the highest pectinase activity of 46.35 U/mg, was identified as Rhodotorula mucilaginosa PY18, and was submitted under accession no. (OM275426) in NCBI. Rhodotorula mucilaginosa PY18 was further enhanced through sequential mutagenesis, resulting in a mutant designated as Rhodotorula mucilaginosa E54 with a specific activity of 114.2 U/mg. Using Response Surface Methodology (RSM), the best culture conditions for the pectinase-producing yeast mutant Rhodotorula mucilaginosa E54 were pH 5, 72-h incubation, 2.5% xylose, and 2.5% malt extract, with a pectinase-specific activity of 156.55 U/mg. Then, the obtained sequences of the endo-polygalacturonase PGI gene from Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were isolated for the first time, sequenced, and submitted to NCBI accession numbers OQ283005 and OQ283006, respectively. The modelled 3D structure of the endo-PGI enzyme (485 residues) was validated using Ramachandran's plot, which showed 87.71, 85.56, and 91.57% in the most favourable region for template Rhodotorula mucilaginosa KR, strain Rhodotorula mucilaginosa PY18, and mutant Rhodotorula mucilaginosa E54, respectively. In molecular docking studies, the results of template Rhodotorula mucilaginosa KR endo-PG1 showed an interaction with an affinity score of - 6.0, - 5.9, and - 5.6 kcal/mol for active sites 1, 2, and 3, respectively. Rhodotorula mucilaginosa PY18 endo-PG1 showed an interaction affinity with a score of - 5.8, - 6.0, and - 5.0 kcal/mol for active sites 1, 2, and 3, respectively. Mutant Rhodotorula mucilaginosa E54 endo-PG1 showed an interaction affinity of - 5.6, - 5.5, - 5.5 and - 5.4 kcal/mol for active sites 1, 2, and 3, respectively. The endo-PGI genes of both the yeast strain Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were successfully cloned and expressed in E. coli DH5α, showing significantly higher endo-PG1 activity, which recorded 94.57 and 153.10 U/mg for recombinant Rhodotorula mucilaginosa pGEM-PGI-PY18 and recombinant mutant Rhotorula pGEM-PGI-E54, respectively.


Assuntos
Poligalacturonase , Rhodotorula , Poligalacturonase/genética , Simulação de Acoplamento Molecular , Escherichia coli/metabolismo , Rhodotorula/genética , Leveduras/metabolismo , Mutagênese
6.
Biotechnol Appl Biochem ; 70(5): 1663-1678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36977651

RESUMO

Pectinases are a collection of multiple enzymes that have a common substrate, that is, pectin. They can act on different parts of pectin due to the structural heterogeneity of pectin. Therefore, they have been placed in different groups, such as protopectinases, polygalacturonases, polymethylesterases, pectin lyases, and pectate lyases. They are naturally present both in multicellular organisms such as higher plants and in unicellular organisms such as microbes. In past decade, it has been witnessed that chemical and mechanical methods employed in industrial processes have led to environmental hazards and serious health disorders, thus increasing the search for eco-friendly approaches with minimal health risks. Hence, microbial enzymes have been extensively used as safer alternative for these environmentally unsafe methods. Among these microbial enzymes, pectinases hold great significance and is one of the principal enzymes that have been used commercially. It is predominantly used as a green biocatalyst for fruit, fiber, oil, textile, beverage, pulp, and paper industry. Thus, this review focuses on the structure of pectin, microbial sources of pectin, and principle industrial applications of pectinases.


Assuntos
Liases , Poligalacturonase , Pectinas
7.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37496205

RESUMO

The main goal of this study was to examine the efficiency of a newly isolated fungus from quince, Aspergillus tubingensis FAT43, to produce the pectinolytic complex using agricultural and industrial waste as the substrate for solid state fermentation. Sugar beet pulp was the most effective substrate inducer of pectinolytic complex synthesis out of all the waste residues examined. For endo-pectinolytic and total pectinolytic activity, respectively, statistical optimization using Placked-Burman Design and Optimal (Custom) Design increased production by 2.22 and 2.15-fold, respectively. Liquification, clarification, and an increase in the amount of reducing sugar in fruit juices (apple, banana, apricot, orange, and quince) processed with pectinolytic complex were identified. Enzymatic pre-treatment considerably increases yield (14%-22%) and clarification (90%). After enzymatic treatment, the best liquefaction was observed in orange juice, whereas the best clarification was obtained in apricot juice. Additionally, the pectinolytic treatment of apricot juice resulted in the highest increase in reducing sugar concentration (11%) compared to all other enzymatically treated juices. Optimizing the production of a highly active pectinolytic complex and its efficient utilization in the processing of fruit juices, including the generation of an increasing amount of waste, are the significant outcomes of this research.


Assuntos
Sucos de Frutas e Vegetais , Poligalacturonase , Fermentação , Poligalacturonase/química , Poligalacturonase/metabolismo , Açúcares
8.
Biotechnol Lett ; 45(7): 847-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171698

RESUMO

OBJECTIVES: PEL3, an alkaline pectinase, exhibited the highest activity among documented alkaline pectate lyases reported in our early study. Unfortunately, undesired thermal stability hampering its industrial application. The purpose of this study is to enhance the performance of wild-type PEL3 (W-PEL3) based on SpyTag/SpyCatcher-mediated cyclization. RESULTS: The cyclized PEL3 (C-PEL3) was observed to fold correctly and generate a spatial conformation in a head-to-tail manner in E. coli. C-PEL3 exhibited comparable optimum pH and temperature to those of W-PEL3. Moreover, the catalytic activity of C-PEL3 increased by 23% compared to W-PEL3, and the kcat/Km of C-PEL3 was 1.5-fold greater than that of the W-PEL3. Importantly, C-PEL3 showed improved stability compared to W-PEL3. Firstly, C-PEL3 displayed a 65% increase in residual activity after treatment at 55 °C for 30 min. Secondly, C-PEL3 was prone to resist heat-induced protein aggregation. Thirdly, C-PEL3 exhibited metal ion stability. Circular dichroism analysis revealed that C-PEL3 was more capable of maintaining its secondary structures than W-PEL3 upon heat treatment. CONCLUSIONS: C-PEL3, the initial example of a circular pectinase through SpyTag/SpyCatcher cyclization, exhibits superior performance and represents a highly encouraging contender for industrial utilization.


Assuntos
Escherichia coli , Poligalacturonase , Ciclização , Escherichia coli/genética , Proteínas/química , Temperatura
9.
Mikrochim Acta ; 190(9): 357, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597027

RESUMO

Novel chiral capillary electrochromatography (CEC) microsystems were constructed based on Aspergillus sp. CM96. As a newly discovered intrinsic characteristic of the cell, cell chirality occupies an essential position in life evolution. Aspergillus sp. CM96 spore (CM96s) was chosen as a proof of concept to develop chiral capillary columns. Interestingly, various types of amino acid (AA) enantiomers were baseline separated under the optimized conditions. Furthermore, the time-dependent chiral interactions between AAs and CM96s were explored in a wider space. Pectinases generated from Aspergillus sp. CM96 fermentation were immobilized onto graphene oxide-functionalized capillary silica monoliths for separating AA enantiomers. Molecular docking simulations were performed to explore chiral separation mechanisms of pectinase for AA enantiomers. These results indicated that Aspergillus sp. CM96-based CEC microsystems have a significant advantage for chiral separation.


Assuntos
Eletrocromatografia Capilar , Simulação de Acoplamento Molecular , Aspergillus , Aminoácidos , Dióxido de Silício
10.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069150

RESUMO

Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.


Assuntos
Lignina , Pleurotus , Lignina/metabolismo , Pleurotus/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo
11.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615596

RESUMO

To increase its operational stability and ongoing reusability, B. subtilis pectinase was immobilized on iron oxide nanocarrier. Through co-precipitation, magnetic iron oxide nanoparticles were synthesized. Scanning electron microscopy (SEM) and energy dispersive electron microscopy (EDEX) were used to analyze the nanoparticles. Pectinase was immobilized using glutaraldehyde as a crosslinking agent on iron oxide nanocarrier. In comparison to free pectinase, immobilized pectinase demonstrated higher enzymatic activity at a variety of temperatures and pH levels. Immobilization also boosted pectinase's catalytic stability. After 120 h of pre-incubation at 50 °C, immobilized pectinase maintained more than 90% of its initial activity due to the iron oxide nanocarrier, which improved the thermal stability of pectinase at various temperatures. Following 15 repetitions of enzymatic reactions, immobilized pectinase still exhibited 90% of its initial activity. According to the results, pectinase's catalytic capabilities were enhanced by its immobilization on iron oxide nanocarrier, making it economically suitable for industrial use.


Assuntos
Enzimas Imobilizadas , Nanopartículas de Magnetita , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Glutaral , Poligalacturonase/metabolismo , Concentração de Íons de Hidrogênio , Nanopartículas Magnéticas de Óxido de Ferro , Temperatura , Cinética
12.
World J Microbiol Biotechnol ; 39(3): 85, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705812

RESUMO

Microorganisms belonging to root and soil provide a wide range of services and benefits to the plant by promoting plant growth and controlling phytopathogens. This study aimed to isolate endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.) and determine their potential in improving plant growth. A total of nineteen different bacterial morphotypes were isolated from root nodules of chickpea and characterized in vitro for plant growth promotion abilities. All bacterial isolates were able to produce indole acetic acid at varying levels, out of which MCA19 was screened as the most efficient indole acetic acid producer (10.25 µg mL-1). MCA8, MCA9, MCA10, MCA11, MCA16, MCA17 and MCA19 were positive for phosphate solubilization, out of which MCA9 was best phosphate solubilizer (18.8 µg mL-1). All bacterial strains showed varying ability to grow on nitrogen-free media. Hydrogen cyanide, pectinase, and cellulase production ability were also observed in isolates, in which MCA9, MCA12, MCA17 and MCA19 were found best. Based on in vitro testing, five isolates MCA2, MCA9, MCA11, MCA17 and MCA19 were selected for further studies. Bacterial isolates MCA9, MCA11, MCA17 and MCA19 were identified by 16S rRNA gene sequence analysis as Pantoea dispersa while MCA2 as Rhizobium pusense. This is the first report on the existence of Pantoea dispersa in the root nodules of chickpea. In pot experiment, a maximum increase of 30% was recorded in plant dry weight upon the application of MCA19. Under field conditions, bacterial isolates, MCA2, MCA11 and MCA19 significantly enhanced nodulation and yield parameters of chickpea, compared to control. Pantoea dispersa MCA19 displayed the highest plant growth-promoting potential by increasing 38% grain yield. Our results indicate that Pantoea dispersa MCA19 is a promising biofertilizer for future applications.


Assuntos
Cicer , Pantoea , RNA Ribossômico 16S/genética , Fosfatos
13.
J Biol Chem ; 296: 100305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465378

RESUMO

The type II secretion system (T2SS) transports fully folded proteins of various functions and structures through the outer membrane of Gram-negative bacteria. The molecular mechanisms of substrate recruitment by T2SS remain elusive but a prevailing view is that the secretion determinants could be of a structural nature. The phytopathogenic γ-proteobacteria, Pectobacterium carotovorum and Dickeya dadantii, secrete similar sets of homologous plant cell wall degrading enzymes, mainly pectinases, by similar T2SSs, called Out. However, the orthologous pectate lyases Pel3 and PelI from these bacteria, which share 67% of sequence identity, are not secreted by the counterpart T2SS of each bacterium, indicating a fine-tuned control of protein recruitment. To identify the related secretion determinants, we first performed a structural characterization and comparison of Pel3 with PelI using X-ray crystallography. Then, to assess the biological relevance of the observed structural variations, we conducted a loop-substitution analysis of Pel3 combined with secretion assays. We showed that there is not one element with a definite secondary structure but several distant and structurally flexible loop regions that are essential for the secretion of Pel3 and that these loop regions act together as a composite secretion signal. Interestingly, depending on the crystal contacts, one of these key secretion determinants undergoes disorder-to-order transitions that could reflect its transient structuration upon the contact with the appropriate T2SS components. We hypothesize that such T2SS-induced structuration of some intrinsically disordered zones of secretion substrates could be part of the recruitment mechanism used by T2SS.


Assuntos
Proteínas de Bactérias/química , Dickeya/enzimologia , Pectobacterium carotovorum/enzimologia , Polissacarídeo-Liases/química , Sistemas de Secreção Tipo II/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Parede Celular/química , Parede Celular/microbiologia , Clonagem Molecular , Cristalografia por Raios X , Dickeya/classificação , Dickeya/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Pectobacterium carotovorum/classificação , Pectobacterium carotovorum/genética , Filogenia , Células Vegetais/química , Células Vegetais/microbiologia , Plantas/química , Plantas/microbiologia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sistemas de Secreção Tipo II/genética , Sistemas de Secreção Tipo II/metabolismo
14.
BMC Microbiol ; 22(1): 145, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610561

RESUMO

BACKGROUND: Bacterial pectinase is an enzyme that could be employed in numerous sectors to break down pectin polysaccharide compounds. The goal of this study is to find pectinase-producing bacteria in avocado peel waste and see if the pectinase enzyme produced can be used to make fruit juice clarification. RESULTS: The researchers isolated four different bacterial strains from avocado peel waste samples. The potential two bacterial isolates that were identified as being Serratia marcescens and Lysinibacillus macrolides. Finally, the analysis of pectinase production and its application in fruit juice clarification were performed using one of the bacterial strains of Serratia marcescens. The clear apple, lemon, and mango juices were further processed to assess each juice's properties. The highest antioxidant activity was recorded in lemon juice samples. The lemon juice showed the highest total titratable acidity and total phenol content. Apple juices contained the highest total soluble solids, reducing sugar content, and viscosity and the mango juices have the maximum pH value recorded. CONCLUSIONS: The pectinase isolated from the bacterium Serratia marcescens could clear fruit juices. This pectinase needs to be studied more to make sure it works better in the fruit industry and other businesses.


Assuntos
Malus , Persea , Frutas/química , Sucos de Frutas e Vegetais , Poligalacturonase , Serratia marcescens
15.
Arch Microbiol ; 204(6): 313, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543769

RESUMO

Fruit and vegetable wastes create unhygienic conditions and pose a environmental pollution. The utilization of such wastes as carbon sources for production of enzyme with microbial intervention could be an ecofriendly and profitable approach, apart from diminishing the waste load. The present investigation focused on the feasibility of using mosambi (Citrus limetta) peel as substrate for multienzyme production (pectinase, cellulase and amylase) through microbial intervention. Fifteen fungi were isolated from organic waste and screened in vitro their potential of biodegradation of mosambi peel through enzymes production. The best performing isolate was selected and identified as Trichoderma asperellum NG-125 (accession number-MW287256). Conditions viz. temperature, pH, incubation time and nutrient addition were optimized for efficient enzymes production. The maximum enzyme activity (U ml-1 min-1) of pectinase (595.7 ± 2.47), cellulase (497.3 ± 2.06) and amylase (440.9 ± 1.44) were observed at pH 5.5, incubation temperature of 30 °C after 10 days of fermentation. Moreover, macro-nutrients such as ammonium sulfate (0.1%) and potassium-di-hydrogen-ortho-phosphate (0.01%) further also enhanced the production of enzymes. The SDS-PAGE analysis of purified pectinase, cellulase and amylase using showed molecular mass of 43, 66 and 33 kDa, respectively. The enzyme retention activity (ERA) of aforesaid enzymes was also tested with four different natural fiber matrices viz., bagasse, rice husk, paddy straw and wheat straw. Among these, the maximum ERA was observed on bagasse matrix (pectinase-56.35%, cellulose-77.68% and amylase 59.54%). Enzymatic juice clarification yield obtained with test enzyme was 75.8%, as compared to 80.5% of commercial enzyme. The result indicates that T. asperellum may be exploited as multifaceted biocatalysis.


Assuntos
Celulase , Hypocreales , Trichoderma , Amilases/metabolismo , Celulase/metabolismo , Fermentação , Hypocreales/metabolismo , Poligalacturonase/metabolismo , Trichoderma/química
16.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930295

RESUMO

Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.

17.
J Appl Microbiol ; 132(5): 3618-3628, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124880

RESUMO

AIM: The aim of the study was to purify and characterize cellulase from a previously isolated Novosphingobium sp. strain Cm1 and to evaluate its waste hydrolysis and bio-stoning efficiency. MATERIALS AND METHODS: There is a growing demand for cellulase, a multipurpose enzyme widely used in industrial applications. Here, we purified cellulase from Novosphingobium sp. Cm1 by cellulose chromatography. SDS-PAGE revealed a molecular mass of 25 kDa. After 18-fold purification, the cellulase had an activity of 31.4 U/mg at pH of 5 and 40°C, and it retained activity at a wide range of pH and temperatures. The presence of Fe2+ and Co2+ boosted the enzyme activity by 57% and 25% respectively. The hydrolysing capacity of the strain towards cellulosic material was assessed for two paper types and the highest activity (2.6 ± 0.05 U/ml) was found with filter paper as the sole carbon source. Alterations in the structure of the papers as a result of bacterial hydrolysis were confirmed by scanning electron microscope and Fourier-transform infrared spectroscopy. The strain was also tested for its potential in various industrial applications and exhibited pectinolytic activity (6.78 ± 0.68 U/ml), xylanolytic activity (0.22 ± 0.14 U/ml) and bio-stoning ability. CONCLUSION: The highly active purified cellulase has a broad pH and temperature range. The strain possesses waste-hydrolysing ability, pectinolytic and xylanolytic ability along with bio-stoning capacity. SIGNIFICANCE AND IMPACT OF THE STUDY: The efficacy and versatility of the enzyme from Novosphingobium sp. Cm1 make it an excellent candidate for diverse industrial applications.


Assuntos
Celulase , Sphingomonadaceae , Celulase/química , Celulose , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Sphingomonadaceae/metabolismo , Temperatura
18.
J Basic Microbiol ; 62(2): 135-149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34845728

RESUMO

The bacteria that colonize plant roots and enhance plant growth by various mechanisms are known as plant growth-promoting rhizobacteria (PGPR). The functions of rhizobacteria stand substantially unexplored and detailed insights into the aerobic rice ecosystem are yet to be examined. In this study, we have isolated rhizobacteria from rice varieties grown under aerobic conditions. Seed germination test showed that strain Ekn 03 was significantly effective in stimulating germination, enhancing shoot and root length, and increasing dry matter accumulation in treated rice plants as compared to the uninoculated plants. Under greenhouse conditions, strain Ekn 03 treated rice varieties showed an overall increase in plant height by 7.63%, dry matter accumulation by 16.23%, and total chlorophyll content by 76.47%. Soil acetylene reduction assay (ARA) (4.17 nmole ethylene/g soil/h) and in-planta ARA (4.2 × 10-2 nmole ethylene/mg fresh weight of plant/h) was significantly higher in Ekn 03 treated rice variety PB 1509 under aerobic conditions. Other rice varieties showed comparable performance on inoculation with strain Ekn 03. The endophytic and rhizospheric population of antibiotic tagged Ekn 03 was higher in the roots of PB 1509 (1.02 × 104 cfu/g and 5.8 × 105 cfu/g soil, respectively) compared to other rice varieties. 16S rDNA sequence analysis revealed that strain Ekn 03 was having 100% similarity with Pseudomonas protegens. This study suggests that strain Ekn 03 can be used as a microbial inoculant in rice plants under aerobic system of cultivation. This is the first report on the application of P. protegens as PGPR in rice.


Assuntos
Oryza , Bioprospecção , Ecossistema , Genótipo , Desenvolvimento Vegetal , Raízes de Plantas , Solo , Microbiologia do Solo
19.
J Basic Microbiol ; 62(2): 116-123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35103341

RESUMO

Microbial enzymatic degradation of biowaste is a sustainable and environmentally friendly solution for eliminating biowaste pollution. It is the underlying cause of the ever-increasing demand for harnessing multipurpose microbes to work as an entity under given complex processes. Twelve bacterial strains of bovine manure were evaluated for their hydrolytic enzyme activity and optimization. Six enzymes; cellulase, amylase, pectinase, chitinase, protease, and gelatinase were selected based on their corresponding abundant biowaste, that is, cellulose, proteinaceous, chitin, and polymeric starchy biowaste. The preliminary qualitative screening was followed by quantitative enzyme production as well as optimal enzyme production conditions. Irrespective of their sample source and origin, all strains showed the highest enzyme production when grown at 40°C for 72 h with pH 7. Comparatively, among the selected enzymes, strains were higher producers of cellulase, protease, and gelatinase. The present study reported the first time Brevibacillus parabrevis (DZ.15) as pectinase producer, Achromobacter spanius (DZ.1) as amylase-protease-chitinase producer, Achromobacter piechaudii (DZ.12) as pectinase-chitinase-gelatinase producer, and two Achromobacter kerstersii (DZ.16 and DZ.17) as pectinase-chitinase producers. Therefore, this study suggested that bovine manure microbes exhibiting novel potential can be used for hydrolysis of environmental biowaste.


Assuntos
Quitinases , Esterco , Animais , Bovinos , Quitina , Hidrólise , Peptídeo Hidrolases
20.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807437

RESUMO

Enzymes that degrade pectin are called pectinases. Pectinases of microbial origin are used in juice clarification as the process is cost-effective. This study screened a pectinase-producing bacterium isolated from soil and identified as Bacillus subtilis 15A B-92 based on the 16S rRNA molecular technique. The purified pectinase from the isolate showed 99.6 U/mg specific activity and 11.6-fold purity. The molecular weight of the purified bacterial pectinase was 14.41 ± 1 kD. Optimum pectinase activity was found at pH 4.5 and 50 °C, and the enzyme was 100% stable for 3.5 h in these conditions. No enzymatic inhibition or activation effect was seen with Fe2+, Ca2+, or Mg2+. However, a slight inhibition was seen with Cu2+, Mn2+, and Zn2+. Tween 20 and 80 slightly inhibited the pectinase, whereas iodoacetic acid (IAA), ethylenediaminetetraacetate (EDTA), urea, and sodium dodecyl sulfate (SDS) showed potent inhibition. The bacterial pectinase degraded citrus pectin (100%); however, it was inactive in the presence of galactose. With citrus pectin as the substrate, the Km and Vmax were calculated as 1.72 mg/mL and 1609 U/g, respectively. The high affinity of pectinase for its substrate makes the process cost-effective when utilized in food industries. The obtained pectinase was able to clarify orange and apple juices, justifying its application in the food industry.


Assuntos
Bacillus subtilis , Poligalacturonase , Bacillus subtilis/genética , Concentração de Íons de Hidrogênio , Poligalacturonase/metabolismo , RNA Ribossômico 16S/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa