Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105622, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176647

RESUMO

Pandemic Pseudomonas aeruginosa clone C strains encode two inner-membrane associated ATP-dependent FtsH proteases. PaftsH1 is located on the core genome and supports cell growth and intrinsic antibiotic resistance, whereas PaftsH2, a xenolog acquired through horizontal gene transfer from a distantly related species, is unable to functionally replace PaftsH1. We show that purified PaFtsH2 degrades fewer substrates than PaFtsH1. Replacing the 31-amino acid-extended linker region of PaFtsH2 spanning from the C-terminal end of the transmembrane helix-2 to the first seven highly divergent residues of the cytosolic AAA+ ATPase module with the corresponding region of PaFtsH1 improves hybrid-enzyme substrate processing in vitro and enables PaFtsH2 to substitute for PaFtsH1 in vivo. Electron microscopy indicates that the identity of this linker sequence influences FtsH flexibility. We find membrane-cytoplasmic (MC) linker regions of PaFtsH1 characteristically glycine-rich compared to those from FtsH2. Consequently, introducing three glycines into the membrane-proximal end of PaFtsH2's MC linker is sufficient to elevate its activity in vitro and in vivo. Our findings establish that the efficiency of substrate processing by the two PaFtsH isoforms depends on MC linker identity and suggest that greater linker flexibility and/or length allows FtsH to degrade a wider spectrum of substrates. As PaFtsH2 homologs occur across bacterial phyla, we hypothesize that FtsH2 is a latent enzyme but may recognize specific substrates or is activated in specific contexts or biological niches. The identity of such linkers might thus play a more determinative role in the functionality of and physiological impact by FtsH proteases than previously thought.


Assuntos
Proteases Dependentes de ATP , Proteínas de Bactérias , Pseudomonas aeruginosa , Sequência de Aminoácidos , Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo
2.
Proteins ; 92(8): 946-958, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597224

RESUMO

Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/ß/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Simulação de Dinâmica Molecular , Proteólise , Clostridium thermocellum/metabolismo , Clostridium thermocellum/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fator sigma/química , Fator sigma/metabolismo , Fator sigma/genética , Sequência de Aminoácidos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Celulossomas/metabolismo , Celulossomas/química , Cristalografia por Raios X , Espectrometria de Massas em Tandem , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
3.
Biochem Biophys Res Commun ; 495(1): 1201-1207, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180014

RESUMO

Prompt removal of misfolded membrane proteins and misassembled membrane protein complexes is essential for membrane homeostasis. However, the elimination of these toxic proteins from the hydrophobic membrane environment has high energetic barriers. The transmembrane protein, FtsH, is the only known ATP-dependent protease responsible for this task. The mechanisms by which FtsH recognizes, unfolds, translocates, and proteolyzes its substrates remain unclear. The structure and function of the ATPase and protease domains of FtsH have been previously characterized while the role of the FtsH periplasmic domain has not clearly identified. Here, we report the 1.5-1.95 Å resolution crystal structures of the Thermotoga maritima FtsH periplasmic domain (tmPD) and describe the dynamic features of tmPD oligomerization.


Assuntos
Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/ultraestrutura , Peptídeo Hidrolases/química , Peptídeo Hidrolases/ultraestrutura , Multimerização Proteica , Thermotoga maritima/enzimologia , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
4.
FEBS Lett ; 591(10): 1419-1428, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28423182

RESUMO

Bacteria sense and respond to osmolarity through the EnvZ-OmpR two-component system. The structure of the periplasmic sensor domain of EnvZ (EnvZ-PD) is not available yet. Here, we present the crystal structure of EnvZ-PD in the presence of CHAPS detergent. The structure of EnvZ-PD shows similar folding topology to the PDC domains of PhoQ, DcuS, and CitA, but distinct orientations of helices and ß-hairpin structures. The CD and NMR spectra of EnvZ-PD in the presence of cholate, a major component of bile salts, are similar to those with CHAPS. Chemical cross-linking shows that the dimerization of EnvZ-PD is significantly inhibited by the CHAPS and cholate. Together with ß-galactosidase assay, these results suggest that bile salts may affect the EnvZ structure and function in Escherichia coli.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Colatos/farmacologia , Ácidos Cólicos/farmacologia , Detergentes/farmacologia , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Complexos Multienzimáticos/química , Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Dicroísmo Circular , Cristalografia por Raios X , Proteínas de Escherichia coli/efeitos dos fármacos , Modelos Moleculares , Complexos Multienzimáticos/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos
5.
Front Microbiol ; 8: 2605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312270

RESUMO

IgaA is an integral inner membrane protein that was discovered as repressor of the RcsCDB phosphorelay system in the intracellular pathogen Salmonella enterica serovar Typhimurium. The RcsCDB system, conserved in many members of the family Enterobacteriaceae, regulates expression of varied processes including motility, biofilm formation, virulence and response to envelope stress. IgaA is an essential protein to which, in response to envelope perturbation, the outer membrane lipoprotein RcsF has been proposed to bind in order to activate the RcsCDB phosphorelay. Envelope stress has also been reported to be sensed by a surface exposed domain of RcsF. These observations support a tight control of the RcsCDB system by RcsF and IgaA via mechanisms that, however, remain unknown. Interestingly, RcsF and IgaA have four conserved cysteine residues in loops exposed to the periplasmic space. Two non-consecutive disulfide bonds were shown to be required for RcsF function. Here, we report mutagenesis studies supporting the presence of one disulfide bond (C404-C425) in the major periplasmic loop of IgaA that is essential for repression of the RcsCDB phosphorelay. Our data therefore suggest that the redox state of the periplasm may be critical for the control of the RcsCDB system by its two upstream regulators, RcsF and IgaA.

6.
Biomol NMR Assign ; 9(2): 321-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25682099

RESUMO

The cellulosome of Clostridium thermocellum is an elegant and efficient multi-enzyme complex for degrading lignocellulose. The cellulosome contains several dozens of carbohydrate hydrolysis enzymes, which are regulated by the presence of environmental substrates through several pairs of sigma and anti-sigma factors. The anti-sigma factors sense the presence of substrates and transduce the signals into the cell. The sigma factors are then released from the corresponding anti-sigma factors, and they recruit RNA polymerase to transcribe specific cellulosomal genes. However, it is not clear how the extracellular signals are transduced into the cell by the anti-sigma factors. The anti-sigma factors of C. thermocellum contain an N-terminal intracellular domain, a trans-membrane helix, a periplasmic domain, a proline-rich region which is probably required for crossing the cell wall, and a C-terminal carbohydrate-binding domain or glycoside hydrolase domain. The periplasmic domain may play a key role in signal transduction; however, its three-dimensional structure is still unknown. Here we report the NMR resonance assignments of the periplasmic domain of anti-sigma factor RsgI2 from C. thermocellum as a basis for further structural determination and functional studies.


Assuntos
Proteínas de Bactérias/química , Celulose/metabolismo , Clostridium thermocellum/química , Proteínas de Membrana/química , Periplasma/química , Espectroscopia de Prótons por Ressonância Magnética , Fator sigma/química , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa